• 제목/요약/키워드: nonlinear cyclic behavior

검색결과 189건 처리시간 0.018초

휨지배 철근콘크리트 부재의 에너지 소산능력 평가방법 (Simplified Method for Estimating Energy-Dissipation Capacity of Flexure-Dominant RC Members)

  • 엄태성;박홍근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.297-305
    • /
    • 2002
  • As advanced earthquake analysis/design methods such as the nonlinear static analysis are developed, it is required to estimate precisely the cyclic behavior of reinforced concrete members that is characterized by strength, deformability, and capacity of energy dissipation. However, currently, estimation of energy dissipation depends on empirical equations that are not sufficiently accurate, or experiment and sophisticated numerical analysis which are difficult to use in practice. In the present study, nonlinear finite element analysis was performed to investigate the behavioral characteristics of flexure-dominant RC members under cyclic load. The effects of axial force, arrangement of reinforcing bars, and reinforcement ratio on the cyclic behavior were studied. Based on the investigation, a simplified method to estimate the capacity of energy dissipation was proposed, and it was verified by the comparison with the finite element analyses and experiments. The proposed method can estimate the energy dissipation of RC members more precisely than currently used empirical equations, and it is easily applicable in practice.

  • PDF

Seismic Response Analyses of Seismically Isolated Structures Using the Laminated Rubber Bearings

  • Koo, Gyeong-Hoi;Lee, Jae-Han;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • 제30권5호
    • /
    • pp.387-395
    • /
    • 1998
  • In general, the laminated rubber bearing (LRB), a composite structure laminated with the elastic rubber and steel plates, has a complex hysteretic nonlinear characteristics in relationships between the restoring force and shear deflection. The representative nonlinear characteristics of LRB include the change of hysteresis loop with cyclic shear deflections and the hardening effects at large shear deflection regions. Changes of the hysteresis loop of LRB with cyclic shear deflections affect the horizontal stiffness and the damping characteristics. The hardening behavior of LRB in large shear deflection region results in an increased horizontal stiffness and therefore, has a great impacton the seismic responses. In this paper, the seismic response analysis is carried out using the modified hysteretic bi-linear model of LRB, which takes into account the hysteresis loop change and the hardening behavior with cyclic shear deflection. The results on seismic responses are compared with those obtained using the widely used hysteretic hi-linear model. The new model is found to reveal the greater amount of peak acceleration response.

  • PDF

Modelling of reinforced concrete flat slab-column connections for system-scale seismic analyses of high-rise buildings

  • T.Y. Yang;O. AlHarras;L. Tobber;O. Sargazi
    • Computers and Concrete
    • /
    • 제31권1호
    • /
    • pp.23-32
    • /
    • 2023
  • Reinforced concrete flat slab (RCFS) with columns is a standard gravity floor system for tall buildings in North America. Typically, RCFS-column connections are designed to resist gravity loads, and their contribution to resisting seismic forces is ignored. However, past experimental research has shown that RCFS-column connections have some strength and ductility, which may not be ignored. Advanced numerical models have been developed in the past to determine the nonlinear cyclic behavior of RCFS-column connections. However, these models are either too complicated for nonlinear dynamic analysis of an entire building or not developed to model the behavior of modern RCFS-column connections. This paper proposes a new nonlinear model suitable for modern RCFS-column connections. The numerical model is verified using experimental data of specimens with various material and reinforcement properties. A 40-story RC shear wall building was designed and analyzed to investigate the influence of RCFS on the global response of tall concrete buildings. The seismic responses of the building with and without the RCFS were modelled and compared. The results show that the modelling of RCFS has a significant impact on the inter-story drifts and force demands on both the seismic force-resisting and gravity elements.

반복하중을 받는 대형 콘크리트 판구조의 비선형 해석 (Nonlinear Analysis of Large Concrete Panel Structures subjected to Cyclic Loads)

  • 정봉오;서수연;이원호;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.113-120
    • /
    • 1994
  • Large Concrete Panel Structures behave quite differently from frame or monolithic shear wall structures because of the weakness of Joint in stiffness and strength. The joint experiences large deformation such as shear-slip in vertical and horizontal joint and rocking and crushing in horizontal joint because of localized stress concentration, but the wall panels behave elastically under cyclic loads. In order to describe the nonlinear behavior of the joint in the analysis of PC structures, different analysis technique from that of RC structures is needed. In this paper, for analysis of large concrete panel subassemblage subjected to cyclic loads, the wall panels are idealized by elastic finite elements, and the joints by nonlinear spring elements with various load-deflection relationship. The analytical results are compared with the experimental results on the strength, stiffness, energy dissipation and lateral drift, and the effectiveness of this computer analysis modelling technique is checked.

  • PDF

Semi-rigid connection modeling for steel frameworks

  • Liu, Yuxin
    • Structural Engineering and Mechanics
    • /
    • 제35권4호
    • /
    • pp.431-457
    • /
    • 2010
  • This article provides a discussion of the mathematic modeling of connections for designing and qualifying structures, systems, and components subject to monotonic or cyclic loading. To characterize the force-deformation behavior of connections under monotonic loading, a review of the Ramberg-Osgood, Richard-Abbott, and Menegotto-Pinto models is conducted, and it is shown that these nonlinear functions can be mathematically derived by scaling up or down a linear force-deformation function. A generalized four-parameter model for simulating connection behavior is investigated to facilitate nonlinear regression analysis. In order to perform seismic analysis of frameworks, a hysteretic model accounting for loading, unloading, and reloading is described using the established monotonic model. For preliminary analysis, a method is provided to quickly determine the model parameters that fit approximately with the observed data. To reach more accurate values of the parameters, the methods of nonlinear regression analysis are investigated and the modified Levenberg-Marquardt and separable nonlinear least-square algorithms are applied in determining the model parameters. Example case studies illustrate the procedure for the computation through the use of experimental/analytical data taken form the literature. Transformation of connection curves from the three-parameter model to the four-parameter model for structural analysis is conducted based on the modeling of connections subject to fire.

지진시 지반의 반복경화/연화 현상에 의한 부지응답 특성 영향 연구 (Cyclic Hardening and Degradation Effects on Site Response during an Earthquake)

  • 이진선
    • 한국지진공학회논문집
    • /
    • 제12권6호
    • /
    • pp.65-71
    • /
    • 2008
  • 본 논문에서는 반복하중에 의한 반복 경화 및 연화 현상을 나타낼 수 있는 수정 IWAN 모델을 이용하여, 1차원 비선형 부지응답 해석프로그램(이하 KODSAP; Kaist One Dimensional Site-response Analysis Program)을 개발하였다. 개발된 프로그램은 지진하중 재하에 따른 지반의 반복경화 및 연화현상에 의한 부지응답 특성 변화를 재현할 수 있다. KODSAP을 이용하여 기반암 상부 40m인 모형지반의 반복경화 및 연화 정도, 지진가속도의 크기에 따른 부지응답특성 변화를 살펴 보았으며, 현재 실무에서 널리 적용되고 있는 등가선형, 비선형해석과 KODSAP 해석결과(지반의 반복경화 및 연화현상을 고려한)과의 차이점을 살펴 보았다.

Bree's interaction diagram of beams with considering creep and ductile damage

  • Nayebi, A.
    • Structural Engineering and Mechanics
    • /
    • 제30권6호
    • /
    • pp.665-678
    • /
    • 2008
  • The beams components subjected to the loading such as axial, bending and cyclic thermal loads were studied in this research. The used constitutive equations are those of elasto-plasticity coupled to ductile and/or creep damage. The nonlinear kinematic hardening behavior was considered in elastoplasticity modeling. The unified damage law proposed for ductile failure and fatigue by the author of Sermage et al. (2000) and Kachanov's creep damage model applied to cyclic creep and low cycle fatigue of beams. Based on the results of the analysis, the shakedown limit loads were determined through the calculation of the residual strains developed in the beam analysis. The iterative technique determines the shakedown limit load in an iterative manner by performing a series of full coupled elastic-plastic and continuum damage cyclic loading modeling. The maximum load carrying capacity of the beam can withstand, were determined and imposed on the Bree's interaction diagram. Comparison between the shakedown diagrams generated by or without creep and/or ductile damage for the loading patterns was presented.

MODELING OF NONLINEAR CYCLIC LOAD BEHAVIOR OF I-SHAPED COMPOSITE STEEL-CONCRETE SHEAR WALLS OF NUCLEAR POWER PLANTS

  • Ali, Ahmer;Kim, Dookie;Cho, Sung Gook
    • Nuclear Engineering and Technology
    • /
    • 제45권1호
    • /
    • pp.89-98
    • /
    • 2013
  • In recent years steel-concrete composite shear walls have been widely used in enormous high-rise buildings. Due to high strength and ductility, enhanced stiffness, stable cycle characteristics and large energy absorption, such walls can be adopted in the auxiliary building; surrounding the reactor containment structure of nuclear power plants to resist lateral forces induced by heavy winds and severe earthquakes. This paper demonstrates a set of nonlinear numerical studies on I-shaped composite steel-concrete shear walls of the nuclear power plants subjected to reverse cyclic loading. A three-dimensional finite element model is developed using ABAQUS by emphasizing on constitutive material modeling and element type to represent the real physical behavior of complex shear wall structures. The analysis escalates with parametric variation in steel thickness sandwiching the stipulated amount of concrete panels. Modeling details of structural components, contact conditions between steel and concrete, associated boundary conditions and constitutive relationships for the cyclic loading are explained. Later, the load versus displacement curves, peak load and ultimate strength values, hysteretic characteristics and deflection profiles are verified with experimental data. The convergence of the numerical outcomes has been discussed to conclude the remarks.

Modeling of nonlinear cyclic response of shear-deficient RC T-beams strengthened with side bonded CFRP fabric strips

  • Hawileh, Rami A.;Abdalla, Jamal A.;Tanarslan, Murat H.;Naser, Mohannad Z.
    • Computers and Concrete
    • /
    • 제8권2호
    • /
    • pp.193-206
    • /
    • 2011
  • The use of Carbon Fiber Reinforced Polymers (CFRP) to strengthen reinforced concrete beams under bending and shear has gained rapid growth in recent years. The performance of shear strengthened beams with externally bonded CFRP laminate or fabric strips is raising many concerns when the beam is loaded under cyclic loading. Such concerns warrant experimental, analytical and numerical investigation of such beams under cyclic loading. To date, limited investigations have been carried out to address this concern. This paper presents a numerical investigation by developing a nonlinear finite element (FE) model to study the response of a cantilever reinforced concrete T-beam strengthened in shear with side bonded CFRP fabric strips and subjected to cyclic loading. A detailed 3D nonlinear finite element model that takes into account the orthotropic nature of the polymer's fibers is developed. In order to simulate the bond between the CFRP sheets and concrete, a layer having the material properties of the adhesive epoxy resin is introduced in the model as an interface between the CFRP sheets and concrete surface. Appropriate numerical modeling strategies were used and the response envelope and the load-displacement hysteresis loops of the FE model were compared with the experimental response at all stages of the cyclic loading. It is observed that the responses of the FE beam model are in good agreement with those of the experimental test. A parametric study was conducted using the validated FE model to investigate the effect of spacing between CFRP sheets, number of CFRP layers, and fiber orientation on the overall performance of the T-beam. It is concluded that successful FE modeling provides a practical and economical tool to investigate the behavior of such strengthened beams when subjected to cyclic loading.

반복하중을 받는 철근콘크리트 휨부재의 비선형해석 (Nonlinear Analysis of Reinforced Concrete Flexural Members under Cyclic Loading)

  • 변근주;김영진
    • 콘크리트학회지
    • /
    • 제3권3호
    • /
    • pp.149-157
    • /
    • 1991
  • 본 논문은 반복하중을 받는 철근콘크리트 휨부재를 비선형해석하기 위한 것으로서, 재료의 구성방정식도출, 비선형 프로그램의 개발 및 개발된 프로그램의 검증으로 구성되어 있다. 재료의 구성방정식도출에서 콘크리트는 직교이방성재료로 모형화하고, 철근은 탄소성모형으로 취하였다. 반복하중하에서 휨부재의 압축부 콘크리트에 이력거동과 강성감소, 인장부 콘크리트에는 균열개폐거동과 균열변형률의 개념을 도입하여 콘크리트의 구성방정식을 도출하였다. 반북하중을 받는 철근콘크리트 휨부재를 해석하기 위하여 4절점등매개요소와 트러스요소의 유한요소정식과 증분반복기법을 적용한 유한요소프로그램을 도출하고, 반복하중을 받는 과소 철근콘크리트 보에 대한 실험결과와 해석결과를 비교하여 개발된 재료모형과 해석프로그램의 타당성을 검증하였다.