• 제목/요약/키워드: nonlinear concrete

검색결과 1,768건 처리시간 0.027초

P.C.탱크의 비선형 재료와 시간의존성 해석 (Nonlinear Material and Time Dependent Analysis of Prestressed Concrete Tank)

  • 조현영;이진수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.65-67
    • /
    • 1991
  • A numerical analysis in linear-elastic state for prestressed concrete tanks including the time-dependent effects due to creep and shrinkage of concrete, relaxation of prestressing cable have been studied by many researchers. In this paper, not only the time dependent factor but also the nonlinear elasto-plastic behavior are considered. Prestresses are considerde in vertical and circumferential direction.

  • PDF

비선형 정적해석을 이용한 철근 콘크리트 구조물 성능평가기법 (Performance Evaluation Methods of Reinforced Concrete Structures using Nonlinear Static Analysis)

  • 윤성환;박대효;이도형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.373-376
    • /
    • 2006
  • There are representative two performance evaluation methods for performance-based design(PBD) of reinforced concrete structures by the nonlinear static analysis, one method includes the capacity spectrum method(CSM) suggested in ATC-40(996) and the other is the displacement coefficient method(DCM) in FEMA-273(1997). The objective of this paper is to compare and verify two methods and suggest the displacement-based design for new performance evaluation of reinforced concrete structures.

  • PDF

비선형 유한요소해석을 이용한 철근콘크리트 교량의 내진성능평가 (Seismic Performance Assessment of RC Bridges using Nonlinear Finite Element Analysis)

  • 김태훈;신현목
    • 한국지진공학회논문집
    • /
    • 제10권2호
    • /
    • pp.31-38
    • /
    • 2006
  • 이 연구의 목적은 비선형 유한요소해석을 이용하여 철근콘크리트 교량의 내진성능을 평가하는데 있다. 정확하고 올바른 성능평가를 위하여 신뢰성 있는 비선형 유한요소해석 프로그램을 사용하였다. 사용된 프로그램은 철근콘크리트 구조물의 해석을 위한 RCAHEST이다. 재료적 비선형성에 대해서는 균열콘크리트에 대한 인장, 압축, 전단모델과 콘크리트 속에 있는 철근모델을 조합하여 고려하였다. 이에 대한 콘크리트의 균열모델로서는 분산균열모델을 사용하였다. 제안한 해석기법을 철근콘크리트 교량에 적용하여 비교, 분석하였다.

Coupling of nonlinear models for steel-concrete interaction in structural RC joints

  • Dominguez, Norberto;Perez-Mota, Jesus
    • Coupled systems mechanics
    • /
    • 제3권2호
    • /
    • pp.195-211
    • /
    • 2014
  • When strong seismic forces act on reinforced concrete structures, their beam-column connections are very susceptible to damage during the earthquake event. The aim of this numerical work is to evaluate the influence of the internal steel reinforcement array on the nonlinear response of a RC beam-column connection when it is subjected to strong cyclic loading -as a seismic load. For this, two specimens (extracted from an experimental test of 12 RC beam-column connections reported in literature) were modeled in the Finite Element code FEAP considering different stirrup's arrays. In order to evaluate the nonlinear response of the RC beam-column connection, the 2D model takes into account the nonlinear thermodynamic behavior of each component: for concrete, a damage model is used; for steel reinforcement, it is adopted a classical plasticity model; in the case of the steel-concrete bonding, this one is considered perfect without degradation. At the end, we show a comparison between the experimental test's responses and the numerical results, which includes the distribution of shear stresses and damage inside the concrete core of the beam-column connection; in the other hand, the effects on the connection of a low and high state of confinement are analyzed for all cases.

Numerical investigations of reinforcement concrete beams with different types of FRP bars

  • Azza M. Al-Ashmawy;Osman Shallan;Tharwat A. Sakr;Hanaa E. Abd-EL-Mottaleb
    • Structural Engineering and Mechanics
    • /
    • 제88권6호
    • /
    • pp.599-608
    • /
    • 2023
  • The present study is focused on instigation of the nonlinear mechanical behavior of reinforced concrete beams considering different types of FRP bars through nonlinear finite element simulations. To explore the impact of the FRP reinforcement type and geometry on the nonlinear mechanical behavior of reinforced beam, intensive parametric studies are carried out and discussed. Twenty models were carried out based on the finite element software (ABAQUS). The concrete damage plasticity model was considered. Four types of fiber polymer bars, CFRP, GFRP, AFRP and BFRP as longitudinal reinforcement for concrete beam were used. The validation of numerical results was confirmed by experimental as well as numerical results, then the parametric study was conducted to evaluate the effect of change in different parameters, such as bar diameter size, type of FRP bars and shear span length. All results were analyzed and discussed through, load-deflection diagram. The results showed that the use of FRP bars in rebar concrete beam improves the beam stiffness and enhance the ultimate load capacity. The load capacity enhanced in the range of (20.44-244.47%) when using different types of FRP bars. The load-carrying capacity of beams reinforced with CFRP is the highest one, beams reinforced with AFRP is higher than that reinforced with BFRP but beams reinforced with GFRP recorded the lowest load of capacity compered with other beams reinforced with FRP Bars.

비선형 정적 해석을 통한 벽식구조물의 내진성능 평가 (Seismic Evaluation of Shear Wall System by Nonlinear Static Analysis Procedures)

  • 안성기;송정원;송진규;이수곤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.63-68
    • /
    • 2000
  • Concrete is popular as a building material, however it is inherently brittle and performs poorly during earthquakes if nor reinforced properly. Traditional retrofit design techniques assume that buildings respond elastically to earthquakes. This assumption simplifies the analysis procedure but can lead to an erroneous conclusion. The complete nonlinear time history analysis is considered overly complex and impractical for general use. Simplified nonlinear analysis methods, referred to as nonlinear static analysis procedures, include the capacity spectrum method(CSM) developed in detail at ATC-40 and the displacement coefficient method(DCM) utilized at FEMA-273. In this study wall APT system. The results were compared and analyzed. The program used was neaMAX-3D to express nonlinear material.

  • PDF

Computer aided reinforcement design of RC structures

  • An, Xuehui;Maekawa, Koichi
    • Computers and Concrete
    • /
    • 제1권1호
    • /
    • pp.15-30
    • /
    • 2004
  • In this study, a design process for reinforced concrete structures using the nonlinear FEM analysis is developed. Instead of using the nonlinear analysis to evaluate the required performance after design process, the nonlinear analysis is applied before designing the reinforcement arrangement inside the RC structures. An automatic reinforcement generator for computer aided reinforcement agreement is developed for this purpose. Based on a nonlinear FEM program for analyzing the reinforced concrete structure, a smart fictitious material model of steel, is proposed which can self-adjust the reinforcement to the required amount at the cracking location according to the load increment. Using this tool, the reinforcement ratio required at design load level can be decided automatically. In this paper, an example of RC beam with opening is used to verify the proposed process. Finally, a trial design process for a real size underground RC LNG tank is introduced.

PSC 구조물의 비선형 거동 예측에 관한 해석적 연구 (Analytical study on prediction of nonlinear behavior of PSC structures)

  • 박재근;오명석;최정호;신현목
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.442-445
    • /
    • 2006
  • This paper presents an analytical prediction of nonlinear characteristics and behavior characteristics PSC structures with un-bonded tendon system. In this paper, a numerical model for un-bonded tendon is proposed based on the finite element method, which can represent straight or curved un-bonded tendon behavior. this model and time-dependent material model used to investigate the time-dependent behavior of un-bonded prestressed concrete structures. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of concrete structures and steel plate was used. The material nonlinearities are taken into account by comprising the tension, compression, and shear models of cracked concrete and models for reinforcements and tendons in the concrete. The smeared crack approach is incorporated. It accounts for the aging, creep and shrinkage of concrete and the stress relaxation of prestressed steel. The proposed un-bonded tendon model and numerical method of un-bonded prestressed concrete structures is verified by comparison with reliable experimental results.

  • PDF

소요강도에 기반한 철근콘크리트 부재의 안전성 평가 (Safety Evaluation Based on Required Strength for Reinforced Concrete Members)

  • 천주현;김기호;이상철;최정호;신현목
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.502-505
    • /
    • 2006
  • The Purpose of this study is to offer an appropriate and reliable safety evaluation method the reinforced concrete members like as reinforced concrete deep beams and reinforced concrete columns, etc. A nonlinear finite element analysis program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) was used to evaluate the ultimate strength analytically for the reinforced concrete members that have complicated mechanical behaviors. The nonlinear material model for the reinforced concrete is composed of models for characterizing the behavior of the concrete, in addition to a model for characterizing the reinforcing bars. The proposed numerical method for the safety evaluation of reinforced concrete bridge structures that is consisted of reinforced concrete member is verified by comparison with reliable experimental results.

  • PDF

A concrete plasticity model with elliptic failure surface and independent hardening/softening

  • Al-Ghamedy, Hamdan N.
    • Structural Engineering and Mechanics
    • /
    • 제2권1호
    • /
    • pp.35-48
    • /
    • 1994
  • A plasticity-based concrete model is proposed. The failure surface is elliptic in the ${\sigma}-{\tau}$ stress space. Independent hardening as well as softening is assumed in tension, compression, and shear. The nonlinear inelastic action initiates from the origin in the ${\sigma}-{\varepsilon}$(${\tau}-{\gamma}$) diagram. Several parameters are incorporated to control hardening/softening regions. The model is incorporated into a nonlinear finite element program along with other classical models. Several examples are solved and the results are compared with experimental data and other failure criteria. "Reasonable results" and stable solutions are obtained for different types of reinforced concrete oriented structures.