• Title/Summary/Keyword: nonlinear concrete

Search Result 1,771, Processing Time 0.025 seconds

Torsional Analysis of RC Beam Considering Tensile Stiffening of Concrete (콘크리트의 인장강성을 고려한 RC보의 비틀림 해석)

  • 박창규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.167-172
    • /
    • 2002
  • Nonlinear analysis of the reinforced concrete beam subjected to torsion is presented. Seventeen equations involving seventeen variables are derived from the equilibrium equation, compatibility equation, and the material constitutive laws to solve the torsion problem. Newton method was used to solve the nonlinear simultaneous equations and efficient algorithms are proposed. Present model covers the behavior of reinforced concrete beam under pure torsion from service load range to ultimate stage. Tensile resistance of concrete after cracking is appropriately considered. The softened concrete truss model and the average stress-strain relations of concrete and steel are used. To verify the validity of Present model, the nominal torsional moment strengths according to ACI-99 code and the ultimate torsional moment by present model are compared to experimental torsional strengths of 55 test specimens found in literature. The ultimate torsional moment strengths by the present model show good results.

  • PDF

Nonlinear Analysis of High Strength Reinforced Concrete Members Considering the Tension Stiffening Model (인장강성 모델을 고려한 고강도 철근콘크리트 부재의 비선형 해석)

  • 홍창우;윤경구;김경진;박제선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.479-482
    • /
    • 1999
  • The tension stiffening effect, which means the maintaining a part of stiffness after cracking of concrete in tensile, exists at a reinforced concrete member because of the concrete softening and bonding stress between cracks. It is required to consider it for precise analysis and evaluation o structural behavior, due to the possibility of discrepancy between the actual behavior and the analysis without considering the tension stiffening effect. Making and adopting a tension stiffening model is the most simple and effective way for considering it at nonlinear analysis which indicated the estimation from models and experimental results were similar each others. The comparisons on RC beam were, also performed in order to analyzed the influence of concrete strength and steel ratio into the structural behavior. They indicated that the results from analysis estimated quite closely to the test results at low steel ratio, however, overestimated at high steel ratio. The overestimation increase linearly as concrete strength or steel ratio increased.

  • PDF

Nonlinear analysis of service stresses in reinforced concrete sections-closed form solutions

  • Barros, Helena F.M.;Martins, Rogerio A.F.
    • Computers and Concrete
    • /
    • v.10 no.5
    • /
    • pp.541-555
    • /
    • 2012
  • This paper presents an algorithm for the evaluation of stresses in reinforced concrete sections under service loads. The algorithm is applicable to any section defined by polygonal contours and is based on an analytical integration of the stresses. The nonlinear behaviour of concrete is represented by the parabola-rectangle law used in the Eurocode-2 for the ultimate concrete design. An integrated definition of the strains in concrete and steel is possible by the use of Heaviside functions, similarly to what is done for ultimate section design in Barros et al. (2004). Other constitutive equations for the definition of the stresses in the concrete or steel can be easily incorporated into the code. The examples presented consist in the evaluation of resulting axial load and bending moment in an irregular section and in a section in L shape. The results, for service stresses, can also be plotted in terms of design abacus; a rectangular doubly reinforced section is presented as example.

Seismic Performance Assessment of Reinforced Concrete Bridge Piers using Damage Indices (손상지수를 이용한 철근콘크리트 교각의 내진성능평가)

  • 김태훈;정영수;신현목
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.144-147
    • /
    • 2003
  • This paper presents a nonlinear finite element analysis procedure for the seismic performance assessment of reinforced concrete bridge piers using damage indices. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Damage indices aim to provide a means of quantifying numerically the damage reinforced concrete bridge piers sustained under earthquake loading. The proposed numerical method for the seismic performance assessment of reinforced concrete bridge piers is verified by comparison with the reliable experimental results.

  • PDF

Seismic Performance Assessment of Hollow Reinforced Concrete and Prestressed Concrete Bridge Columns

  • Kim, Tae-Hoon;Seong, Dai-Jeong;Shin, Hyun Mock
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.3
    • /
    • pp.165-176
    • /
    • 2012
  • The aim of this study is to assess the seismic performance of hollow reinforced concrete and prestressed concrete bridge columns, and to provide data for developing improved seismic design criteria. By using a sophisticated nonlinear finite element analysis program, the accuracy and objectivity of the assessment process can be enhanced. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), is used to analyze reinforced concrete and prestressed concrete structures. Tensile, compressive and shear models of cracked concrete and models of reinforcing and prestressing steel were used to account for the material nonlinearity of reinforced concrete and prestressed concrete. The smeared crack approach was incorporated. The proposed numerical method for the seismic performance assessment of hollow reinforced concrete and prestressed concrete bridge columns is verified by comparing it with the reliable experimental results. Additionally, the studies and discussions presented in this investigation provide an insight into the key behavioral aspects of hollow reinforced concrete and prestressed concrete bridge columns.

Nonlinear analysis of damaged RC beams strengthened with glass fiber reinforced polymer plate under symmetric loads

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Rabia, Benferhat;Belkacem, Adim
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.113-122
    • /
    • 2018
  • This study presents a new beam-column model comprising material nonlinearity and joint flexibility to predict the nonlinear response of reinforced concrete structures. The nonlinear behavior of connections has an outstanding role on the nonlinear response of reinforced concrete structures. In presented research, the joint flexibility is considered applying a rotational spring at each end of the member. To derive the moment-rotation behavior of beam-column connections, the relative rotations produced by the relative slip of flexural reinforcement in the joint and the flexural cracking of the beam end are taken into consideration. Furthermore, the considered spread plasticity model, unlike the previous models that have been developed based on the linear moment distribution subjected to lateral loads includes both lateral and gravity load effects, simultaneously. To confirm the accuracy of the proposed methodology, a simply-supported test beam and three reinforced concrete frames are considered. Pushover and nonlinear dynamic analysis of three numerical examples are performed. In these examples the nonlinear behavior of connections and the material nonlinearity using the proposed methodology and also linear flexibility model with different number of elements for each member and fiber based distributed plasticity model with different number of integration points are simulated. Comparing the results of the proposed methodology with those of the aforementioned models describes that suggested model that only uses one element for each member can appropriately estimate the nonlinear behavior of reinforced concrete structures.

The Structural Behavior of Cold-Formed Steel Composite Beams (냉간성형강재를 이용한 합성보의 구조적인 거동)

  • 양구록;송준엽;권영봉
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.206-213
    • /
    • 1999
  • The behavior of composite beams, which are composed of cold-formed steel sheeting and normal strength concrete, have been studied. An analytical method has been developed to trace the nonlinear behavior of composite beams. The nonlinear material properties of steel sheeting, reinforcing steel bar and concrete have been included in the analysis. The nonlinear moment-curvature relation of the composite beam has been described using a cross section analysis method and a simple power model, separately. The load-deflection behavior of the beams has been simulated by step-by-step numerical integration method and is compared with test results.

  • PDF

Seismic assessment of existing r.c. framed structures with in-plan irregularity by nonlinear static methods

  • Bosco, Melina;Ferrara, Giovanna A.F.;Ghersi, Aurelio;Marinoc, Edoardo M.;Rossi, Pier Paolo
    • Earthquakes and Structures
    • /
    • v.8 no.2
    • /
    • pp.401-422
    • /
    • 2015
  • This paper evaluates the effectiveness of three nonlinear static methods for the prediction of the dynamic response of in-plan irregular buildings. The methods considered are the method suggested in Eurocode 8, a method previously proposed by some of the authors and based on corrective eccentricities and a new method in which two pushover analyses are considered, one with lateral forces applied to the centres of mass of the floors and the other with only translational response. The numerical analyses are carried out on a set of refined models of reinforced concrete framed buildings. The response predicted by the nonlinear static analyses is compared to that provided by nonlinear dynamic analyses. The effectiveness of the nonlinear static methods is evaluated in terms of absolute and interstorey displacements.

Static and dynamic analysis of cable-suspended concrete beams

  • Kumar, Pankaj;Ganguli, Abhijit;Benipal, Gurmail
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.611-620
    • /
    • 2017
  • A new theory of weightless sagging planer elasto-flexible cables under point loads is developed earlier by the authors and used for predicting the nonlinear dynamic response of cable-suspended linear elastic beams. However, this theory is not valid for nonlinear elastic cracked concrete beams possessing different positive and negative flexural rigidity. In the present paper, the flexural response of simply supported cracked concrete beams suspended from cables by two hangers is presented. Following a procedure established earlier, rate-type constitutive equations and third order nonlinear differential equations of motion for the structures undergoing small elastic displacements are derived. Upon general quasi-static loading, negative nodal forces, moments and support reactions may be introduced in the cable-suspended concrete beams and linear modal frequencies may abruptly change. Subharmonic resonances are predicted under harmonic loading. Uncoupling of the nodal response is proposed as a more general criterion of crossover phenomenon. Significance of the bilinearity ratio of the concrete beam and elasto-configurational displacements of the cable for the structural response is brought out. The relevance of the proposed theory for the analysis and the design of the cable-suspended bridges is critically evaluated.

Quantitative impact response analysis of reinforced concrete beam using the Smoothed Particle Hydrodynamics (SPH) method

  • Mokhatar, S.N.;Sonoda, Y.;Kueh, A.B.H.;Jaini, Z.M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.917-938
    • /
    • 2015
  • The nonlinear numerical analysis of the impact response of reinforced concrete/mortar beam incorporated with the updated Lagrangian method, namely the Smoothed Particle Hydrodynamics (SPH) is carried out in this study. The analysis includes the simulation of the effects of high mass low velocity impact load falling on beam structures. Three material models to describe the localized failure of structural elements are: (1) linear pressure-sensitive yield criteria (Drucker-Prager type) in the pre-peak regime for the concrete/mortar meanwhile, the shear strain energy criterion (Von Mises) is applied for the steel reinforcement (2) nonlinear hardening law by means of modified linear Drucker-Prager envelope by employing the plane cap surface to simulate the irreversible plastic behavior of concrete/mortar (3) implementation of linear and nonlinear softening in tension and compression regions, respectively, to express the complex behavior of concrete material during short time loading condition. Validation upon existing experimental test results is conducted, from which the impact behavior of concrete beams are best described using the SPH model adopting an average velocity and erosion algorithm, where instability in terms of numerical fragmentation is reduced considerably.