• Title/Summary/Keyword: nonlinear classification

Search Result 213, Processing Time 0.032 seconds

Fast Pattern Classification with the Multi-layer Cellular Nonlinear Networks (CNN) (다층 셀룰라 비선형 회로망(CNN)을 이용한 고속 패턴 분류)

  • 오태완;이혜정;손홍락;김형석
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.9
    • /
    • pp.540-546
    • /
    • 2003
  • A fast pattern classification algorithm with Cellular Nonlinear Network-based dynamic programming is proposed. The Cellular Nonlinear Networks is an analog parallel processing architecture and the dynamic programing is an efficient computation algorithm for optimization problem. Combining merits of these two technologies, fast pattern classification with optimization is formed. On such CNN-based dynamic programming, if exemplars and test patterns are presented as the goals and the start positions, respectively, the optimal paths from test patterns to their closest exemplars are found. Such paths are utilized as aggregating keys for the classification. The algorithm is similar to the conventional neural network-based method in the use of the exemplar patterns but quite different in the use of the most likely path finding of the dynamic programming. The pattern classification is performed well regardless of degree of the nonlinearity in class borders.

An MILP Approach to a Nonlinear Pattern Classification of Data (혼합정수 선형계획법 기반의 비선형 패턴 분류 기법)

  • Kim, Kwangsoo;Ryoo, Hong Seo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.2
    • /
    • pp.74-81
    • /
    • 2006
  • In this paper, we deal with the separation of data by concurrently determined, piecewise nonlinear discriminant functions. Toward the end, we develop a new $l_1$-distance norm error metric and cast the problem as a mixed 0-1 integer and linear programming (MILP) model. Given a finite number of discriminant functions as an input, the proposed model considers the synergy as well as the individual role of the functions involved and implements a simplest nonlinear decision surface that best separates the data on hand. Hence, exploiting powerful MILP solvers, the model efficiently analyzes any given data set for its piecewise nonlinear separability. The classification of four sets of artificial data demonstrates the aforementioned strength of the proposed model. Classification results on five machine learning benchmark databases prove that the data separation via the proposed MILP model is an effective supervised learning methodology that compares quite favorably to well-established learning methodologies.

CLASSIFICATION AND EXISTENCE OF NONOSCILLATORY SOLUTIONS OF HIGHER ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

  • ZHOU YONG;LI C. F.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.127-144
    • /
    • 2005
  • In this paper, we consider the higher order nonlinear neutral delay difference equation of the form $\Delta^{\gamma}(x_{n}+px_{n-\gamma})+f(n, x_{n-\sigma_1(n)}, x_{n-\sigma_2(n)}, \ldots, x_{n-\sigma{_m}(n)})=0$. We give an integrated classification of nonoscillatory solutions of the above equation according to their asymptotic behaviours. Necessary and sufficient conditions for the existence of nonoscillatory solutions with designated asymptotic properties are also established.

Efficient two-step pattern matching method for off-line recognition of handwritten Hangul (필기체 한글의 오프라인 인식을 위한 효과적인 두 단계 패턴 정합 방법)

  • 박정선;이성환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.1-8
    • /
    • 1994
  • In this paper, we propose an efficient two-step pattern matching method which promises shape distortion-tolerant recognition of handwritten of handwritten Hangul syllables. In the first step, nonlinear shape normalization is carried out to compensate for global shape distortions in handwritten characters, then a preliminary classification based on simple pattern matching is performed. In the next step, nonlinear pattern matching which achieves best matching between input and reference pattern is carried out to compensate for local shape distortions, then detailed classification which determines the final result of classification is performed. As the performance of recognition systems based on pattern matching methods is greatly effected by the quality of reference patterns. we construct reference patterns by combining the proposed nonlinear pattern matching method with a well-known averaging techniques. Experimental results reveal that recognition performance is greatly improved by the proposed two-step pattern matching method and the reference pattern construction scheme.

  • PDF

Diagnostic Classification Based on Nonlinear Representation and Filtering of Process Measurement Data (공정측정데이터의 비선형표현과 전처리를 활용한 분류기반 진단)

  • Cho, Hyun-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3000-3005
    • /
    • 2015
  • Reliable monitoring and diagnosis of industrial processes is quite important for in terms of quality and safety. The goal of fault diagnosis is to find process variables responsible for causing specific abnormalities of the process. This work presents a classification-based diagnostic scheme based on nonlinear representation of process data. The use of a nonlinear kernel technique is able to reduce the size of the data considered and provides efficient and reliable representation of the measurement data. As a filtering stage a preprocessing is performed to eliminate unwanted parts of the data with enhanced performance. The case study of an industrial batch process has shown that the performance of the scheme outperformed other methods. In addition, the use of a nonlinear representation technique and filtering improved the diagnosis performance in the case study.

Implementation of Unsupervised Nonlinear Classifier with Binary Harmony Search Algorithm (Binary Harmony Search 알고리즘을 이용한 Unsupervised Nonlinear Classifier 구현)

  • Lee, Tae-Ju;Park, Seung-Min;Ko, Kwang-Eun;Sung, Won-Ki;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.354-359
    • /
    • 2013
  • In this paper, we suggested the method for implementation of unsupervised nonlinear classification using Binary Harmony Search (BHS) algorithm, which is known as a optimization algorithm. Various algorithms have been suggested for classification of feature vectors from the process of machine learning for pattern recognition or EEG signal analysis processing. Supervised learning based support vector machine or fuzzy c-mean (FCM) based on unsupervised learning have been used for classification in the field. However, conventional methods were hard to apply nonlinear dataset classification or required prior information for supervised learning. We solved this problems with proposed classification method using heuristic approach which took the minimal Euclidean distance between vectors, then we assumed them as same class and the others were another class. For the comparison, we used FCM, self-organizing map (SOM) based on artificial neural network (ANN). KEEL machine learning datset was used for simulation. We concluded that proposed method was superior than other algorithms.

Comparison of machine learning algorithms for regression and classification of ultimate load-carrying capacity of steel frames

  • Kim, Seung-Eock;Vu, Quang-Viet;Papazafeiropoulos, George;Kong, Zhengyi;Truong, Viet-Hung
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.193-209
    • /
    • 2020
  • In this paper, the efficiency of five Machine Learning (ML) methods consisting of Deep Learning (DL), Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), and Gradient Tree Booting (GTB) for regression and classification of the Ultimate Load Factor (ULF) of nonlinear inelastic steel frames is compared. For this purpose, a two-story, a six-story, and a twenty-story space frame are considered. An advanced nonlinear inelastic analysis is carried out for the steel frames to generate datasets for the training of the considered ML methods. In each dataset, the input variables are the geometric features of W-sections and the output variable is the ULF of the frame. The comparison between the five ML methods is made in terms of the mean-squared-error (MSE) for the regression models and the accuracy for the classification models, respectively. Moreover, the ULF distribution curve is calculated for each frame and the strength failure probability is estimated. It is found that the GTB method has the best efficiency in both regression and classification of ULF regardless of the number of training samples and the space frames considered.

Nonlinear Interaction between Consonant and Vowel Features in Korean Syllable Perception (한국어 단음절에서 자음과 모음 자질의 비선형적 지각)

  • Bae, Moon-Jung
    • Phonetics and Speech Sciences
    • /
    • v.1 no.4
    • /
    • pp.29-38
    • /
    • 2009
  • This study investigated the interaction between consonants and vowels in Korean syllable perception using a speeded classification task (Garner, 1978). Experiment 1 examined whether listeners analytically perceive the component phonemes in CV monosyllables when classification is based on the component phonemes (a consonant or a vowel) and observed a significant redundancy gain and a Garner interference effect. These results imply that the perception of the component phonemes in a CV syllable is not linear. Experiment 2 examined the further relation between consonants and vowels at a subphonemic level comparing classification times based on glottal features (aspiration and lax), on place of articulation features (labial and coronal), and on vowel features (front and back). Across all feature classifications, there were significant but asymmetric interference effects. Glottal feature.based classification showed the least amount of interference effect, while vowel feature.based classification showed moderate interference, and place of articulation feature-based classification showed the most interference. These results show that glottal features are more independent to vowels, but place features are more dependent to vowels in syllable perception. To examine the three-way interaction among glottal, place of articulation, and vowel features, Experiment 3 featured a modified Garner task. The outcome of this experiment indicated that glottal consonant features are independent to both the place of articulation and vowel features, but the place of articulation features are dependent to glottal and vowel features. These results were interpreted to show that speech perception is not abstract and discrete, but nonlinear, and that the perception of features corresponds to the hierarchical organization of articulatory features which is suggested in nonlinear phonology (Clements, 1991; Browman and Goldstein, 1989).

  • PDF

Nonlinear damage detection using linear ARMA models with classification algorithms

  • Chen, Liujie;Yu, Ling;Fu, Jiyang;Ng, Ching-Tai
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Majority of the damage in engineering structures is nonlinear. Damage sensitive features (DSFs) extracted by traditional methods from linear time series models cannot effectively handle nonlinearity induced by structural damage. A new DSF is proposed based on vector space cosine similarity (VSCS), which combines K-means cluster analysis and Bayesian discrimination to detect nonlinear structural damage. A reference autoregressive moving average (ARMA) model is built based on measured acceleration data. This study first considers an existing DSF, residual standard deviation (RSD). The DSF is further advanced using the VSCS, and then the advanced VSCS is classified using K-means cluster analysis and Bayes discriminant analysis, respectively. The performance of the proposed approach is then verified using experimental data from a three-story shear building structure, and compared with the results of existing RSD. It is demonstrated that combining the linear ARMA model and the advanced VSCS, with cluster analysis and Bayes discriminant analysis, respectively, is an effective approach for detection of nonlinear damage. This approach improves the reliability and accuracy of the nonlinear damage detection using the linear model and significantly reduces the computational cost. The results indicate that the proposed approach is potential to be a promising damage detection technique.

Sparse kernel classication using IRWLS procedure

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.4
    • /
    • pp.749-755
    • /
    • 2009
  • Support vector classification (SVC) provides more complete description of the lin-ear and nonlinear relationships between input vectors and classifiers. In this paper. we propose the sparse kernel classifier to solve the optimization problem of classification with a modified hinge loss function and absolute loss function, which provides the efficient computation and the sparsity. We also introduce the generalized cross validation function to select the hyper-parameters which affects the classification performance of the proposed method. Experimental results are then presented which illustrate the performance of the proposed procedure for classification.

  • PDF