• Title/Summary/Keyword: nonlinear capacity spectrum method

Search Result 66, Processing Time 0.021 seconds

Seismic Evaluation of Shear Wall System by Nonlinear Static Analysis Procedures (비선형 정적 해석을 통한 벽식구조물의 내진성능 평가)

  • 안성기;송정원;송진규;이수곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.63-68
    • /
    • 2000
  • Concrete is popular as a building material, however it is inherently brittle and performs poorly during earthquakes if nor reinforced properly. Traditional retrofit design techniques assume that buildings respond elastically to earthquakes. This assumption simplifies the analysis procedure but can lead to an erroneous conclusion. The complete nonlinear time history analysis is considered overly complex and impractical for general use. Simplified nonlinear analysis methods, referred to as nonlinear static analysis procedures, include the capacity spectrum method(CSM) developed in detail at ATC-40 and the displacement coefficient method(DCM) utilized at FEMA-273. In this study wall APT system. The results were compared and analyzed. The program used was neaMAX-3D to express nonlinear material.

  • PDF

Evaluation of Capacity Spectrum Methods for Estimating the Peak Inelastic Responses (최대 비탄성 변위 응답 예측을 위한 기존 능력스펙트럼법들의 유효성 평가 및 비교)

  • 김홍진;민경원;이상현;박민규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.35-44
    • /
    • 2004
  • In the capacity spectrum method(CSM) using a linear response spectrum, the peak response of an inelastic system under a given earthquake load is estimated transforming the system into the equivalent elastic one. The CSM for estimating the peak inelastic response is evaluated in this paper. The equivalent period and damping ratio are calculated using the ATC-40, G lkan, Kowalsky, and Iwan methods, and the performance points are obtained according to the procedure B of ATC-40. Analysis results indicate that the ATC-40 method generally underestimates the peak response resulting in the unsafe design, while the G lkan and Kowalsky methods overestimate the responses. The Iwan method produces the values between those by the ATC-40 method and the G lkan and Kowalsky methods, and estimates the responses relatively closer to the exact ones. Further, it is found that the Kowalsky method gives the negative equivalent damping ratios depending on the hardening ratios, and thereby can not be used to estimate the responses in some cases.

Effects of Inelastic Demand Spectrum on Seismic Capacity Evaluation of Curved Bridge by Capacity Spectrum Method (역량스펙트럼을 이용한 곡선교의 내진성능평가에 대한 비탄성요구스펙트럼의 영향)

  • Cho, Sung Gook;Park, Woong Ki;Joe, Yang Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.195-206
    • /
    • 2011
  • The capacity spectrum method(CSM) has been more frequently used as a tool to evaluate the seismic capacity of the structure. Many formulas of strength reduction factors(SRF) have been proposed and adopted to generate the inelastic demand spectrum for the CSM. This study evaluates the impacts of the type of the SRF on the inelastic demand spectrum and finally on the seismic response displacement of curved bridge. For the purpose, the several existing formulas of SRFs were comparatively investigated through the case study. Curved bridges with different subtended angles were selected and the displacements of the bridge piers were estimated by using the different formulas of SRFs. Nonlinear time history analyses were also performed for the validation purpose of the CSM results. According to study results, the CSM may generate the larger displacement responses than the actual behaviors for the curved bridge with larger subtended angles. Though many methods have been suggested to generate the inelastic demand spectrum for CSM, they might not give noticeable differences in inelastic displacement of the bridge pier.

Sustainable retrofit design of RC frames evaluated for different seismic demand

  • Zerbin, Matteo;Aprile, Alessandra
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1337-1353
    • /
    • 2015
  • Seismic upgrading of existing structures is a technical and social issue aimed at risk reduction. Sustainable design is one of the most important challenges in any structural project. Nowadays, many retrofit strategies are feasible and several traditional and innovative options are available to engineers. Basically, the design strategy can lead to increase structural ductility, strength, or both of them, but also stiffness regulation and supplemental damping are possible strategies to reduce seismic vulnerability. Each design solution has different technical and economical performances. In this paper, four different design solutions are presented for the retrofit of an existing RC frame with poor concrete quality and inadequate reinforcement detailing. The considered solutions are based on FRP wrapping of the existing structural elements or alternatively on new RC shear walls introduction. This paper shows the comparison among the considered design strategies in order to select the suitable solution, which reaches the compromise between the obtained safety level and costs during the life-cycle of the building. Each solution is worked out by considering three different levels of seismic demand. The structural capacity of the considered retrofit solutions is assessed with nonlinear static analysis and the seismic performance is evaluated with the capacity spectrum method.

Modeling and Optimization of RMS Pulse Width for Transmission in Dispersive Nonlinear Fibers

  • Lee, Jong-Hyung
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.258-263
    • /
    • 2003
  • Simple algebraic expressions are derived to approximate the optimal input RMS pulse width and the resulting output RMS pulse width in single-mode fibers. The results are compared with the previously published methods and with numerical results by the split-step Fourier method. In addition, for a transform-limited Gaussian input pulse, it is shown that there is no optimum input pulse width to minimize the output spectrum width. Finally, with fiber nonlinearity, it is shown mathematically that there is not an optimum input pulse width to minimize the product,${\sigma}_t{\sigma}_{\omega}$, which is inversely proportional to the transmission capacity of WDM systems.

Modified Nonlinear Static Pushover Procedures of MDOF Bridgesfor Seismic Performance Evaluation (내진성능평가를 위한 다자유도 교량의 수정 비선형 등가정적해석법)

  • Cho, Chang-Geun;Kim, Young-Sang;Bae, Soo-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.175-184
    • /
    • 2006
  • Two methods of the nonlinear static pushover analysis have been presented for the performance-based seismic design and evaluation of MDOF continuous bridges. Guidelines for buildings presented in FEMA-273 applying the Displacement Coefficient Method (DCM) and in ATC applying the Capacity Spectrum Method(CSM) have been modified for MDOF bridges. Two methods are compared with the time- history analysis. The lateral load distribution pattern for seismic loads has been examined in the static pushover analysis. The force-based fiber frame finite element has been implemented in the modeling of reinforced concrete piers.

Assessment of nonlinear static and incremental dynamic analyses for RC structures

  • Oncu, Mehmet Emin;Yon, Merve Sahin
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1195-1211
    • /
    • 2016
  • In this study, seismic behaviour of reinforced concrete buildings using the pushover and incremental dynamic analysis method was investigated. A numerical study was performed for a reinforced concrete frame building. Pushover analysis according to uniform and triangular load shapes and incremental dynamic analyses were performed for selected building. For the nonlinear analysis, three ground motion records were selected to ensure compatibility with the design spectrum defined in the Turkish Seismic Code. The maximum response, dynamic pushover curve, capacity curves, interstorey drifts and moment rotation curves for various element ends of the selected building were obtained. Results were compared each other and good correlation was obtained between the dynamic analyses envelope with static pushover curves for the building.

Seismic vulnerability assessment of confined masonry buildings based on ESDOF

  • Ranjbaran, Fariman;Kiyani, Amir Reza
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.489-499
    • /
    • 2017
  • The effects of past earthquakes have demonstrated the seismic vulnerability of confined masonry structures (CMSs) to earthquakes. The results of experimental analysis indicate that damage to these structures depends on lateral displacement applied to the walls. Seismic evaluation lacks an analytical approach because of the complexity of the behavior of this type of structure; an empirical approach is often used for this purpose. Seismic assessment and risk analysis of CMSs, especially in area have a large number of such buildings is difficult and could be riddled with error. The present study used analytical and numerical models to develop a simplified nonlinear displacement-based approach for seismic assessment of a CMS. The methodology is based on the concept of ESDOF and displacement demand and is compared with displacement capacity at the characteristic period of vibration according to performance level. Displacement demand was identified using the nonlinear displacement spectrum for a specified limit state. This approach is based on a macro model and nonlinear incremental dynamic analysis of a 3D prototype structure taking into account uncertainty of the mechanical properties and results in a simple, precise method for seismic assessment of a CMS. To validate the approach, a case study was considered in the form of an analytical fragility curve which was then compared with the precise method.

Evaluation of the Inelastic Seismic Response of Curved Bridges by Capacity Spectrum Method using Equivalent Damping (등가감쇠비를 이용한 역량스펙트럼법에 의한 곡선교의 비탄성지진응답 평가)

  • Joe, Yang-Hee;Cho, Sung-Gook;Ma, Jeong-Suck
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.17-26
    • /
    • 2009
  • The capacity spectrum method (CSM), which is known to be an approximate technique for assessing the seismic capacity of an existing structure, was originally proposed for simple building structures that could be modeled as single-degree-of-freedom (SDOF) systems. More recently, however, CSM has increasingly been adopted for assessing most bridge structures, as it has many practical advantages. Some studies on this topic are now being performed, and a few results of these have been presented as ground-breaking research. However, studies have until now been limited to symmetrical straight bridges only. This study evaluates the practical applicability of CSM to the evaluation of irregular curved bridges. For this purpose, the seismic capacities of 3-span prestressed concrete bridges with different subtended angles subjected to some recorded earthquakes are compared with a more refined approach based on nonlinear time history analysis. The results of the study show that when used for curved bridges, CSM induces higher inelastic displacement responses than the actual values, and that the gap between the two becomes larger as the subtended angle increases.

A Methodology of Seismic Damage Assessment Using Capacity Spectrum Method (능력 스펙트럼법을 이용한 건물 지진 손실 평가 방법)

  • Byeon, Ji-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.1-8
    • /
    • 2005
  • This paper describes a new objective methodology of seismic building damage assessment which is called Advanced Component Method(ACM). ACM is a major attempt to replace the conventional loss estimation procedure, which is based on subjective measures and the opinions of experts, with one that objectively measures both earthquake intensity and the response ol buildings. First, response of typical buildings is obtained analytically by nonlinear seismic static analysis, push-over analyses. The spectral displacement Is used as a measure of earthquake intensity in order to use Capacity Spectrum Method and the damage functions for each building component, both structural and non-structural, are developed as a function of component deformation. Examples of components Include columns, beams, floors, partitions, glazing, etc. A repair/replacement cost model is developed that maps the physical damage to monetary damage for each component. Finally, building response, component damage functions, and cost model were combined probabilistically, using Wonte Carlo simulation techniques, to develop the final damage functions for each building type. Uncertainties in building response resulting from variability in material properties and load assumptions were incorporated in the Latin Hypercube sampling technique. The paper also presents and compares ACM and conventional building loss estimation based on historical damage data and reported loss data.