• 제목/요약/키워드: nonlinear boundary conditions

검색결과 521건 처리시간 0.029초

유한요소법을 이용한 공기 순환 방식의 골프화 설계에 관한 연구 (1Analysis of Outsole in Golf shoes by using Finite Element Method)

  • 송우진;김용욱;문병영;강범수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.224-228
    • /
    • 2001
  • This paper presents the analyzing method of golf shoes and shows design technique including air-cycled pump in the midsole. The golf shoes are analyzed by using the finite element method for the optimization in design by considering the configuration of midsole and outsole, which compose the golf shoes. Also the optimum size of air-cycled pump in the midsole is examined. Standard human pressure values for boundary conditions are adoped for the finite element analysis. The unknown constants of the strain energy function of Ogden type are observed in accordance with the axial tension test. By using the commercial FEM software for nonlinear analysis, MARC V7.3, the strains and the values of volume change for midsole and outsole are obtained, respectively. As a result, it can be concluded that these values in the midsole and the outsole are different depending on the characteristic of elastomer. More precise investigation about the assembly of two parts, which represent midsole and outsole, is under studying.

  • PDF

포물선형 띠기초의 자유진동 해석 (Free Vibration Analysis of Parabolic Strip Foundations)

  • 이태은;이종국;강희종;이병구
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.703-706
    • /
    • 2005
  • Since soil structure interactions are one of the most important subjects in the structural/foundation engineering, much study concerning the soil structure interactions had been carried out. One of typical structures related to the soil structure interactions is the strip foundation which is basically defined as the beam or strip rested on or supported by the soils. At the present time, lack of studies on dynamic problems related to the strip foundations is still found in the literature. From these viewpoint this paper aims to theoretically investigate dynamics of the parabolic strip foundations and also to present the practical engineering data for the design purpose. Differential equations governing the free, out o plane vibrations of such strip foundations are derived, in which effects of the rotatory and torsional inertias and also shear deformation are included although the warping of the cross-section is excluded. Governing differential equations subjected to the boundary conditions of free-free end constraints are numerically solved for obtaining the natural frequencies and mode shapes by using the numerical integration technique and the numerical method of nonlinear equation.

  • PDF

Minimum-Time Attitude Reorientations of Three-Axis Stabilized Spacecraft Using Only Magnetic Torquers

  • Roh, Kyoung-Min;Park, Sang-Young;Choi, Kyu-Hong;Lee, Sang-Uk
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권2호
    • /
    • pp.17-27
    • /
    • 2007
  • Minimum-time attitude maneuvers of three-axis stabilized spacecraft are presented to study the feasibility of using three magnetic torquers perform large angle maneuvers. Previous applications of magnetic torquers have been limited to spin-stabilized satellites or supplemental actuators of three axis stabilized satellites because of the capability of magnetic torquers to produce torques about a specific axes. The minimum-time attitude maneuver problem is solved by applying a parameter optimization method for orbital cases to verify that the magnetic torque system can perform as required. Direct collocation and a nonlinear programming method with a constraining method by Simpson's rule are used to convert the minimum-time maneuver problems into parameter optimization problems. An appropriate number of nodes is presented to find a bang-bang type solution to the minimum-time problem. Some modifications in the boundary conditions of final attitude are made to solve the problem more robustly and efficiently. The numerical studies illustrate that the presented method can provide a capable and robust attitude reorientation by using only magnetic torquers. However, the required maneuver times are relatively longer than when thrusters or wheels are used. Performance of the system in the presence of errors in the magnetometer as well as the geomagnetic field model still good.

Stochastic thermo-mechanically induced post buckling response of elastically supported nanotube-reinforced composite beam

  • Chaudhari, Virendra Kumar;Shegokar, Niranjan L.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • 제4권5호
    • /
    • pp.585-611
    • /
    • 2017
  • This article covenants with the post buckling witticism of carbon nanotube reinforced composite (CNTRC) beam supported with an elastic foundation in thermal atmospheres with arbitrary assumed random system properties. The arbitrary assumed random system properties are be modeled as uncorrelated Gaussian random input variables. Unvaryingly distributed (UD) and functionally graded (FG) distributions of the carbon nanotube are deliberated. The material belongings of CNTRC beam are presumed to be graded in the beam depth way and appraised through a micromechanical exemplary. The basic equations of a CNTRC beam are imitative constructed on a higher order shear deformation beam (HSDT) theory with von-Karman type nonlinearity. The beam is supported by two parameters Pasternak elastic foundation with Winkler cubic nonlinearity. The thermal dominance is involved in the material properties of CNTRC beam is foreseen to be temperature dependent (TD). The first and second order perturbation method (SOPT) and Monte Carlo sampling (MCS) by way of CO nonlinear finite element method (FEM) through direct iterative way are offered to observe the mean, coefficient of variation (COV) and probability distribution function (PDF) of critical post buckling load. Archetypal outcomes are presented for the volume fraction of CNTRC, slenderness ratios, boundary conditions, underpinning parameters, amplitude ratios, temperature reliant and sovereign random material properties with arbitrary system properties. The present defined tactic is corroborated with the results available in the literature and by employing MCS.

가선집재시스템 역학구조 해석에 관한 연구 - 고정식 가선집재시스템을 중심으로 - (A Study on Mechanical Analysis of Cable Logging Systems - with an Example of a Standing Skyline -)

  • 정주상
    • 한국산림과학회지
    • /
    • 제82권1호
    • /
    • pp.34-43
    • /
    • 1993
  • 이 논문에서는 고정식 가선집재기를 중심으로 집재작업의 구조적 특성을 역학적 원리를 이용하여 해석하였다. 그리고 집재지의 지형여건, 시스템의 기하학적 형태 및 작업조건과의 함수관계에서 최대허용반송용량을 추정하기 위한 함수관계식을 힘과 모멘트의 평형조건으로부터 유도하는 과정을 제시하였다. 이러한 관계식 중에는 벌도목의 들어올려진 정도와 단선구조 cable 철선의 역학적 해석을 위한 기본 관계식들이 포함되었고, 단선구조 역학해석은 현수선원리를 기초로 하여 단선의 처짐이 고려되었다. 역학관계식들은 복잡한 비선형함수식들로 구성되어 이를 풀기 위한 과정을 제시하기 위하여 전산모델을 개발하였다, 이 모델에서는 계산목적상 Secant기법을 이용하였다. 또한 가상적인 데이타를 이용하여 전산모델의 적용예를 제시하였다.

  • PDF

Effect of higher order terms of Maclaurin expansion in nonlinear analysis of the Bernoulli beam by single finite element

  • Zahrai, Seyed Mehdi;Mortezagholi, Mohamad Hosein;Mirsalehi, Maryam
    • Structural Engineering and Mechanics
    • /
    • 제58권6호
    • /
    • pp.949-966
    • /
    • 2016
  • The second order analysis taking place due to non-linear behavior of the structures under the mechanical and geometric factors through implementing exact and approximate methods is an indispensible issue in the analysis of such structures. Among the exact methods is the slope-deflection method that due to its simplicity and efficiency of its relationships has always been in consideration. By solving the differential equations of the modified slope-deflection method in which the effect of axial compressive force is considered, the stiffness matrix including trigonometric entries would be obtained. The complexity of computations with trigonometric functions causes replacement with their Maclaurin expansion. In most cases only the first two terms of this expansion are used but to obtain more accurate results, more elements are needed. In this paper, the effect of utilizing higher order terms of Maclaurin expansion on reducing the number of required elements and attaining more rapid convergence with less error is investigated for the Bernoulli beam with various boundary conditions. The results indicate that when using only one element along the beam length, utilizing higher order terms in Maclaurin expansion would reduce the relative error in determining the critical buckling load and kinematic parameters in the second order analysis.

Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory

  • Chikh, Abdelbaki;Bakora, Ahmed;Heireche, Houari;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • 제57권4호
    • /
    • pp.617-639
    • /
    • 2016
  • In this work, an analytical formulation based on both hyperbolic shear deformation theory and stress function, is presented to study the nonlinear post-buckling response of symmetric functionally graded plates supported by elastic foundations and subjected to in-plane compressive, thermal and thermo-mechanical loads. Elastic properties of material are based on sigmoid power law and varying across the thickness of the plate (S-FGM). In the present formulation, Von Karman nonlinearity and initial geometrical imperfection of plate are also taken into account. By utilizing Galerkin procedure, closed-form expressions of buckling loads and post-buckling equilibrium paths for simply supported plates are obtained. The effects of different parameters such as material and geometrical characteristics, temperature, boundary conditions, foundation stiffness and imperfection on the mechanical and thermal buckling and post-buckling loading capacity of the S-FGM plates are investigated.

Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects

  • Golabchi, Hadi;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • 제21권4호
    • /
    • pp.431-440
    • /
    • 2018
  • Fluid velocity analysis on the instability of pipes reinforced by silica nanoparticles ($SiO_2$) is presented in this paper. Mori-Tanaka model is used for obtaining the effective materials properties of the nanocomposite structure considering agglomeration effects. The well known Navier-Stokes equation is used for obtaining the applied force of fluid to pipe. Based on the Reddy higher-order shear deformation theory, the motion equations are derived based on energy method and Hamilton's principal. The frequency and critical fluid velocity of structure are calculated using differential quadrature method (DQM) so that the effects of different parameters such as volume fractions of SiO2 nanoparticles, SiO2 nanoparticles agglomeration, boundary conditions and geometrical parameters of pipes are considered on the nonlinear vibration and instability of the pipe. Results indicate that increasing the volume fractions of SiO2 nanoparticles, the frequency and critical fluid velocity of the structure are increased. Furthermore, considering SiO2 nanoparticles agglomeration, decreases the frequency and critical fluid velocity of the pipe.

Dynamic response of heat and mass transfer in blood flow through stenosed bifurcated arteries

  • Charkravarty S.;Sen S.
    • Korea-Australia Rheology Journal
    • /
    • 제17권2호
    • /
    • pp.47-62
    • /
    • 2005
  • The present study deals with a mathematical model describing the dynamic response of heat and mass transfer in blood flow through bifurcated arteries under stenotic condition. The geometry of the bifurcated arterial segment possessing constrictions in both the parent and the daughter arterial lumen frequently appearing in the diseased arteries causing malfunction of the cardiovascular system, is formulated mathematically with the introduction of the suitable curvatures at the lateral junction and the flow divider. The blood flowing through the artery is treated to be Newtonian. The nonlinear unsteady flow phenomena is governed by the Navier-Stokes equations while those of heat and mass transfer are controlled by the heat conduction and the convection-diffusion equations respectively. All these equations together with the appropriate boundary conditions describing the present biomechanical problem following the radial coordinate transformation are solved numerically by adopting finite difference technique. The respective profiles of the flow field, the temperature and the concentration and their distributions as well are obtained. The influences of the stenosis, the arterial wall motion and the unsteady behaviour of the system in terms of the heat and mass transfer on the blood stream in the entire arterial segment are high­lighted through several plots presented at the end of the paper in order to illustrate the applicability of the present model under study.

유한요소법을 이용한 분할판 개념하의 평판 좌굴해석 (Buckling analyses of flat plates through two-element plate concept by using finite element method)

  • 민철기;손원기;주재현;류시융
    • 전산구조공학
    • /
    • 제8권3호
    • /
    • pp.79-89
    • /
    • 1995
  • 본 논문에서는 평판 두께 방향의 선형 및 비선형 응력 분포를 일정한 크기의 단순응력 상태로 가정하는 분할판(Two-element plate) 개념을 이용하여 비선형 특성을 나타내는 평판의 강도해석을 할 수 있는 Reissner 범함수와, 재질 특성은 선형이면서 기하학적 비선형 특성만을 갖는 평판의 강도해석을 할 수 있는 변형 Reissner 범함수를 모델링하였다. 두 종류의 Reissner 범함수들을 근거로 하여 축방향 하중을 받는 평판의 선형 좌굴과 좌굴후의 비선형 특성 및 최대강도들을 계산할 수 있는 유한요소 방정식과 프로그램 개발을 시도하였다. 개발한 프로그램을 이용한 수치해석 결과, 분할판 이론을 사용한 선형좌굴해석 결과가 기존의 평판이론을 사용한 선형좌굴해석 결과와 유사항 경향을 나타냄으로써 분할판 이론에 근거한 유한요소법을 하중과 경계조건 및 구성재질이 다양한 일반적인 평판의 강도해석에 확대 적용함은 물론 좌굴후 비선형재질 특성으로 인한 평판의 최대강도도 예측 가능하다고 생각한다.

  • PDF