• Title/Summary/Keyword: nonlinear FE analysis

Search Result 251, Processing Time 0.026 seconds

Structural Analysis of Composite Sandwich Panel under Compression Loading (압축하중을 받는 복합재료 샌드위치 패널의 구조해석)

  • Kim, Kwang-Soo;Jang, Young-Soon
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • In this study, structural analyses were carried out on the composite sandwich panel which was tested under compression loading. In the structural analyses, three types of finite element modelling were considered and linear buckling analysis and nonlinear analysis were performed for each FE-model. Through the analyses, it was found that shell elements for face parts and solid elements for core part were appropriate for the better prediction of the buckling load of the panel. If the material failure of the face is critical than overall buckling of the sandwich panel, the use of one shell element through the thickness direction was suitable in the FE-model for the better predictions of failure location and failure load.

Modeling fire performance of externally prestressed steel-concrete composite beams

  • Zhou, Huanting;Li, Shaoyuan;Zhang, Chao;Naser, M.Z.
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.625-636
    • /
    • 2021
  • This paper examines the fire performance of uninsulated and uncoated restrained steel-concrete composite beams supplemented with externally prestressed strands through advanced numerical simulation. In this work, a sequentially coupled thermo-mechanical analysis is carried out using ABAQUS. This analysis utilizes a highly nonlinear three-dimensional finite element (FE) model that is specifically developed and validated using full-sized specimens tested in a companion fire testing program. The developed FE model accounts for nonlinearities arising from geometric features and material properties, as well as complexities resulting from prestressing systems, fire conditions, and mechanical loadings. Four factors are of interest to this work including effect of restraints (axial vs. rotational), degree of stiffness of restraints, the configuration of external prestressed tendons, and magnitude of applied loading. The outcome of this analysis demonstrates how the prestressing force in the external tendons is primarily governed by the magnitude of applied loading and experienced temperature level. Interestingly, these results also show that the stiffness of axial restraints has a minor influence on the failure of restrained and prestressed steel-concrete composite beams. When the axial restraint ratio does not exceed 0.5, the critical deflection of the composite beam is lower than that of the composite beam with a restraint ratio of 1.0.

Performance analysis of a detailed FE modelling strategy to simulate the behaviour of masonry-infilled RC frames under cyclic loading

  • Mohamed, Hossameldeen M.;Romao, Xavier
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.551-565
    • /
    • 2018
  • Experimental testing is considered the most realistic approach to obtain a detailed representation of the nonlinear behaviour of masonry-infilled reinforced concrete (RC) structures. Among other applications, these tests can be used to calibrate the properties of numerical models such as simplified macro-models (e.g., strut-type models) representing the masonry infill behaviour. Since the significant cost of experimental tests limits their widespread use, alternative approaches need to be established to obtain adequate data to validate the referred simplified models. The proposed paper introduces a detailed finite element modelling strategy that can be used as an alternative to experimental tests to represent the behaviour of masonry-infilled RC frames under earthquake loading. Several examples of RC infilled frames with different infill configurations and properties subjected to cyclic loading are analysed using the proposed modelling approach. The comparison between numerical and experimental results shows that the numerical models capture the overall nonlinear behaviour of the physical specimens with adequate accuracy, predicting their monotonic stiffness, strength and several failure mechanisms.

Nonlinear Analysis of RC Slabs based on the Strain Decomposition Technique (변형률 분할기법을 이용한 철근콘크리트 슬래브의 비선형 유한요소해석)

  • Chung Won-Seok;Woo Young-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.433-439
    • /
    • 2005
  • This paper describes a reinforced concrete crack model, which utilizes a strain decomposition technique. The strain decomposition technique enables the explicit inclusion of physical behavior across the cracked concrete surface such as aggregate interlock and dowel action rather than intuitively defining the shear retention factor. The proposed concrete crack model is integrated into the commercial finite element software ABAQUS shell elements through a user-supplied material subroutine. The FE results have been compared to experimental results reported by other researchers. The proposed bridge FE model is capable of predicting the initial cracking load level, the ultimate load capacity, and the crack pattern with good accuracy.

  • PDF

A shell-dynamics model for marine pipelines of large suspended length

  • Katifeoglou, Stefanos A.;Chatjigeorgiou, Ioannis K.
    • Ocean Systems Engineering
    • /
    • v.5 no.4
    • /
    • pp.301-318
    • /
    • 2015
  • The present investigations introduce the shell-finite element discretization for the dynamics of slender marine pipelines. A long catenary pipeline, corresponding to a particular Steel Catenary Riser (SCR), is investigated under long-standing cyclic loading. The long structure is divided into smaller tubular parts which are discretized with 8-node planar shell elements. The transient analysis of each part is carried out by the implicit time integration scheme, within a Finite Elements (FE) solver. The time varying external loads and boundary conditions on each part are the results of a prior solution of an integrated line-dynamics model. The celebrated FE approximation can produce a more detailed stress distribution along the structural surface than the simplistic "line-dynamics" approach.

Axial compressive behavior of concrete-filled steel tube columns with stiffeners

  • Liang, Wei;Dong, Jiangfeng;Wang, Qingyuan
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.151-159
    • /
    • 2018
  • In order to reduce the deformation and delay the local buckling of concrete filled steel tube (CFST) columns, strengthening the structures with stiffeners is an effective method. In this paper, a new stiffening method with inclined stiffeners was used to investigate the behaviors of short CFST columns under axial compression. Besides, a three-dimensional nonlinear finite element (FE) model was applied to simulate the mechanical performances, including the total deformation, local buckling, and stress-strain relationship. Revised constitutive models of stiffened steel tube and confined concrete are proposed. A good agreement was achieved between the test and FE results. Furthermore, the calculated results of load capacity by using a simplified method also show a good correlation with experimental data.

Characteristic features of concrete behaviour: Implications for the development of an engineering finite-element tool

  • Kotsovos, Michael D.;Pavlovic, Milija N.;Cotsovos, Demetrios M.
    • Computers and Concrete
    • /
    • v.5 no.3
    • /
    • pp.243-260
    • /
    • 2008
  • The present article summarises the fundamental characteristics of concrete behaviour which underlie the formulation of an engineering finite element model capable of realistically predicting the behaviour of (plain or reinforced) concrete structural forms in a wide range of problems ranging from static to impact loading without the need of any kind of re-calibration. The already published evidence supporting the proposed formulation is complemented by four additional typical case studies presented herein; for each case, a comparative study is carried out between numerical predictions and the experimental data which reveals good agreement. Such evidence validates the material characteristics upon which the FE model's formulation is based and provides an alternative explanation regarding the behaviour of structural concrete and how it should be modelled which contradicts the presently (widely) accepted assumptions adopted in the majority of FE models used to predict the behaviour of concrete.

Transient heat transfer analysis using Galerkin finite element method for reinforced concrete slab exposed to high elevated temperature

  • Han, Byung-Chan;Kwon, Young-Jin;Lee, Byung-Jae;Kwon, Seung-Jun;Chae, Young-Suk
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1097-1112
    • /
    • 2016
  • Fire loading causes a critical collapse of RC (Reinforced Concrete) Structures since the embedded steels inside are relative week against high elevated temperature. Several numerical frameworks for fire resistance have been proposed, however they have limitations such as unstable convergence and long calculation period. In the work, 2-D nonlinear FE technique is proposed using Galerkin method for RC structures under fire loading. Closed-form element stiffness with a triangular element is adopted and verified with fire test on three RC slabs with different fire loading conditions. Several simulations are also performed considering fire loading conditions, water contents, and cover depth. The proposed numerical technique can handle time-dependent fire loading, convection, radiation, and material properties. The proposed technique can be improved through early-aged concrete behavior like moisture transport which varies with external temperature.

A Numerical Calculation of Eddy Current Field by Applying FEM and BEM Alternately (유한요소법과 경계요소법의 교호적용에 의한 와전류장 해석)

  • Im, Jae-Won
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.7
    • /
    • pp.457-461
    • /
    • 2000
  • The finite element method (FEM) is suitable for the analysis of a complicated region that includes nonlinear materials, whereas the boundary element method (BEM) is naturally effective for analyzing a very large region with linear characteristics. Therefore, considering the advantages in both methods, a novel algorithm for the alternate application of the FEM and BEM to magnetic field problems with the open boundary is presented. This approach avoids the disadvantages of the typical numerical methods with the open boundary problem such as a great number of unknown values for the FEM and non-symmetric matrix for the Hybrid FE-BE method. The solution of the overall problems is obtained by iterative calculations accompanied with the new acceleration method.

  • PDF

Probabilistic pounding analysis of high-pier continuous rigid frame bridge with actual site conditions

  • Jia, Hongyu;Zhao, Jingang;Li, Xi;Li, Lanping;Zheng, Shixiong
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.193-202
    • /
    • 2018
  • This paper studied the probability of pounding occurred between decks and abutments of a long span high-pier continuous rigid fame bridge subjected to ground motions with local soil effect. A pounding probability analysis methodology has been proposed using peak acceleration at bedrock as intensity measure (IM) for multi-support seismic analysis. The bridge nonlinear finite element (FE) models was built with four different separation distances. Effect of actual site condition and non-uniform spatial soil profiles on seismic wave propagating from bedrock to ground surface is modelled. Pounding probability of the high-pier bridge under multi-support seismic excitations (MSSE) is analyzed based on the nonlinear incremental dynamic analysis (n-IDA). Pounding probability results under uniform excitations (UE) without actual local site effect are compared with that under MSSE with site effect. The study indicates that the required design separation length between deck and abutment under uniform excitations is larger than that under MSSE as the peak acceleration at bedrock increases. As the increase of both separation distance between deck and abutment and the peak acceleration, the probability of pounding occurred at a single abutment or at two abutments simultaneously under MSSE is less than that under UE. It is of great significance considering actual local site effect for determining the separation distance between deck and abutment through the probability pounding analysis of the high-pier bridge under MSSE.