• Title/Summary/Keyword: nonlinear AR

Search Result 59, Processing Time 0.03 seconds

Stability of a magnetic structure producing an M6.5 flare in the active region 12371

  • Kang, Jihye;Inoue, Satoshi;Kusano, Kanya;Park, Sung-Hong;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.83.2-83.2
    • /
    • 2019
  • We study the stability of the magnetic structure in active region (AR) 12371 producing an M6.5 flare on June 22 2015. We first perform a nonlinear force-free fields (NLFFFs) extrapolation to derive three-dimensional (3D) magnetic fields based on time series of observed photospheric magnetic fields. The NLFFFs well describe an observed sigmoidal structure with the shape of a double arc magnetic configuration. Next, we examine three possible instabilities (kink, torus, and double arc) to investigate how the M6.5 flare is triggered in the double arc loops. Consequently, the double arc loops are stable against kink and torus instabilities, but possibly unstable against the double arc instability before the flare occurrence. Finally, we discuss a probable scenario for the M6.5 flare.

  • PDF

3-Component Velocity of Magnetized plasma at Solar Photosphere

  • Jung, Hyewon;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.70.3-70.3
    • /
    • 2019
  • We present a method to estimate 3-component plasma velocity (Vx, Vy and Vz) at solar photosphere near solar disk center, using the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) called Space-weather HMI Active Region Patch (SHARP). In Heliocentric-Cartesian Coordinates, the component of Vz is obtained from Dopplergram while the components of Vx and Vy are derived from the relation of $B_z{\overrightarrow{u}}=B_z{\overrightarrow{{\nu}_t}}-{\nu}_z{\overrightarrow{B_t}}$ (Demoulin & Berger 2003) using a series of vector magnetograms by an optical flow technique NAVE (Nonlinear Affine Velocity Estimator). This velocity measurement method is applied to AR 12158 producing an X1.6 flare along with a coronal mass ejection. We find noticeable upflow motions at both ends of flux ropes which become a major eruption part, and strong transverse motions nearby them before the eruption. We will discuss the change of plasma motions and magnetic fields before and after the eruption.

  • PDF

Static and dynamic characterization of a flexible scaled joined-wing flight test demonstrator

  • Carregado, Jose;Warwick, Stephen;Richards, Jenner;Engelsen, Frode;Suleman, Afzal
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.117-144
    • /
    • 2019
  • High Altitude and Long Endurance (HALE) aircraft are capable of providing intelligence, surveillance and reconnaissance (ISR) capabilities over vast geographic areas when equipped with advanced sensor packages. As their use becomes more widespread, the demand for additional range, endurance and payload capability will increase and designers are exploring non-conventional configurations to meet the increasing demands. One such configuration is the joined-wing concept. A joined-wing aircraft is one that typically connects a front and aft wings in a diamond shaped planform. One such example is the Boeing SensorCraft configuration. While the joined-wing configuration offers potential benefits regarding aerodynamic efficiency, structural weight, and sensing capabilities, structural design requires careful consideration of elastic buckling resulting from the aft wing supporting, in compression, part of the forward wing structural loading. It has been shown already that this is a nonlinear phenomenon, involving geometric nonlinearities and follower forces that tend to flatten the entire configuration, leading to structural overload due to the loss of the aft wing's ability to support the forward wing load. Severe gusts are likely to be the critical design condition, with flight control system interaction in the form of Gust Load Alleviation (GLA) playing a key role in minimizing the structural loads. The University of Victoria Center for Aerospace Research (UVic-CfAR) has built a 3-meter span scaled and flexible wing UAV based on the Boeing SensorCraft design. The goal is to validate the nonlinear structural behavior in flight. The main objective of this research work is to perform Ground Vibration Tests (GVT) to characterize the dynamic properties of the scaled flight vehicle. Results from the experimental tests are used to characterize the modal dynamics of the aircraft, and to validate the numerical models. The GVT results are an important step towards a safe flight test program.

Ultimate Load Analysis of Axisymmetric Shells of Revolution Subjected to External Pressure (외압(外壓)을 받는 축대칭(軸對稱) Shell의 한계하중(限界荷重)에 관한 연구(硏究))

  • J.B.,Kim;C.Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 1983
  • This paper describes the application of the finite element method to the large deflection elastic plastic analysis and ultimate load calculation of axisymmetric shell of revolution with initial imperfection subjected to external pressure. The nonlinear equilibrium equations are linearized by the successive incremental method and are solved by the combination of load increment and iteration scheme with considering plastic deformation theory. To get the more realistic effect of large deflection, corrected coordinats and directions of applied load ar every load increment steps are used. The effects of the plasticity, initial imperfection and the shape of shells on the ultimate load of clamped circular cap under external pressure are investigated. Consequently, the following conclusions are obtained; (1) At same geometric parameter $\lambda$, each shape of clamped circular caps yield same elastic ultimate loads in both cases, i.e. with and without initial imperfections, whereas, in the case of elastic-plastic state the shell becomes thicker, the ultimate loads are getting smaller. (2) The effects of initial imperfection to ultimate load are most significant in the elastic case and are more senstive in the elastic-plastic state with the thinner shells.

  • PDF

Threshold Autoregressive Models for VBR MPEG Video Traces (VBR MPEG 비디오 추적을 위한 임계치 자회귀 모델)

  • 오창윤;배상현
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.4
    • /
    • pp.101-112
    • /
    • 1999
  • In this paper variable bit rate VBR Moving Picture Experts Group (MPEG) coded full-motion video traffic is modeled by a nonlinear time-series process. The threshold autoregressive (TAR) process is of particular interest. The TAR model is comprised of a set of autoregressive (AR) processes that are switched between amplitude sub-regions. To model the dynamics of the switching between the sub-regions a selection of amplitude dependent thresholds and a delay value is required. To this end, an efficient and accurate TAR model construction algorithm is developed to model VBR MPEG-coded video traffic. The TAR model is shown to accurately represent statistical characteristics of the actual full-motion video trace. Furthermore. in simulations for the bit-loss rate actual and TAR traces show good agreement.

  • PDF

Numerical Calculation of the Far Field Acoustic Pressure from the Unsteady Motion of the Three-dimensional Vortex Filament (삼차원 와선의 비정상 거동에 의한 원거리 음압의 수치해석)

  • Ryu, Ki-Wahn;Lee, Duck-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.942-950
    • /
    • 1997
  • Far field acoustic pressure from the evolution and interaction of three-dimensional vortex filament is calculated numerically. A vortex ring is a typical example of the three-dimensional vortex filament. An elliptic vortex ring emits a strong sound signal due to significant distortion and stretching of the vortec filament. The far field acoustic pressure is linearly dependent on the third time derivatives of the vortex positions. A numerical scheme of high resolution is employed to describe in detail the elliptic vortex ring motions which ar highly nonlinear. Descretized vortex filaments are interpolated by using a parametric blending function to remove a possible numerical instability. The distorted vortex filament, owing to the self-induced and the induced velocity from the other vortex segments, is redistributed at each time step. The accuracy and efficiency of the scheme are validated by comparisons with the analytic solution of circular vortex ring interaction.

A Study on the Correlations between Molecular Structures of Soil Humins and Sorption Properties of Phenanthrene (토양 휴민(Humin)의 분자구조 특성과 Phenanthrene 흡착상수와의 상관관계에 대한 연구)

  • Lee, Doo-Hee;Eom, Won-Suk;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.897-905
    • /
    • 2013
  • In this study, sorption coefficients (${\log}K_{OC}$, n) for the binding of phenanthrene (PHE) to soil humins, insoluble fraction of soil humc substances (HS), were determined and relationship between the sorption coefficients and structural characteristics of the soil humins were investigated. The soil humins used in the present study were isolated from 7 different soils including 5 domestic soils, an IHSS standard and a peat soil, and characterized by elemental analysis and CPMAS $^{13}C$ NMR method. $^{13}C$ NMR spectral features indicate that the soil humins are mainly made up of aliphatic carbons (57.1~72.3% in total carbon) with high alkyl-C moiety, and the alkyl-C contents ($C_{Al-H,C}$, %) was in order of granite soil Hu (26~42%) > volcanic ash soil, HL Hu (23.9%) > Peat Hu (14.0%). The results of correlation study show that a positive relationship ($r^2$ = 0.77, p < 0.05) between organic carbon normalized-sorption coefficients ($K_{OC}$, mL/g) and alkyl-C contents($C_{Al-H,C}$, %), while negative relationship ($r^2$ = (-)0.74, p < 0.05) between Freundlich sorption parameter (n) and H,C-substituted aromatic carbon contents ($C_{Ar-H,C}$, %). The magnitude of $K_{OC}$ values are also negatively well correlated with polarity index (e.g., PI, N + O)/C) ($r^2$ = (-)0.74, p < 0.1). These results suggest that the binding capacity (e.g., $K_{OC}$) for PHE is increased in soil humin molecules having high contents of alkyl-C or lower polarity, and nonlinear sorption for PHE increased as the H,C-substituted aromatic carbon contents ($C_{Ar-H,C}$, %) in the soil humins increased. The PHE sorption characteristics on soil humins are discussed based on the dual reactive mode of sorption model.

Control of pH Neutralization Process using Simulation Based Dynamic Programming in Simulation and Experiment (ICCAS 2004)

  • Kim, Dong-Kyu;Lee, Kwang-Soon;Yang, Dae-Ryook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.620-626
    • /
    • 2004
  • For general nonlinear processes, it is difficult to control with a linear model-based control method and nonlinear controls are considered. Among the numerous approaches suggested, the most rigorous approach is to use dynamic optimization. Many general engineering problems like control, scheduling, planning etc. are expressed by functional optimization problem and most of them can be changed into dynamic programming (DP) problems. However the DP problems are used in just few cases because as the size of the problem grows, the dynamic programming approach is suffered from the burden of calculation which is called as 'curse of dimensionality'. In order to avoid this problem, the Neuro-Dynamic Programming (NDP) approach is proposed by Bertsekas and Tsitsiklis (1996). To get the solution of seriously nonlinear process control, the interest in NDP approach is enlarged and NDP algorithm is applied to diverse areas such as retailing, finance, inventory management, communication networks, etc. and it has been extended to chemical engineering parts. In the NDP approach, we select the optimal control input policy to minimize the value of cost which is calculated by the sum of current stage cost and future stages cost starting from the next state. The cost value is related with a weight square sum of error and input movement. During the calculation of optimal input policy, if the approximate cost function by using simulation data is utilized with Bellman iteration, the burden of calculation can be relieved and the curse of dimensionality problem of DP can be overcome. It is very important issue how to construct the cost-to-go function which has a good approximate performance. The neural network is one of the eager learning methods and it works as a global approximator to cost-to-go function. In this algorithm, the training of neural network is important and difficult part, and it gives significant effect on the performance of control. To avoid the difficulty in neural network training, the lazy learning method like k-nearest neighbor method can be exploited. The training is unnecessary for this method but requires more computation time and greater data storage. The pH neutralization process has long been taken as a representative benchmark problem of nonlin ar chemical process control due to its nonlinearity and time-varying nature. In this study, the NDP algorithm was applied to pH neutralization process. At first, the pH neutralization process control to use NDP algorithm was performed through simulations with various approximators. The global and local approximators are used for NDP calculation. After that, the verification of NDP in real system was made by pH neutralization experiment. The control results by NDP algorithm was compared with those by the PI controller which is traditionally used, in both simulations and experiments. From the comparison of results, the control by NDP algorithm showed faster and better control performance than PI controller. In addition to that, the control by NDP algorithm showed the good results when it applied to the cases with disturbances and multiple set point changes.

  • PDF

Nonlinear Conte-Zbilut-Federici (CZF) Method of Computing LF/HF Ratio: A More Reliable Index of Changes in Heart Rate Variability

  • Vernon Bond, Jr;Curry, Bryan H;Kumar, Krishna;Pemminati, Sudhakar;Gorantla, Vasavi R;Kadur, Kishan;Millis, Richard M
    • Journal of Pharmacopuncture
    • /
    • v.19 no.3
    • /
    • pp.207-212
    • /
    • 2016
  • Objectives: Acupuncture treatments are safe and effective for a wide variety of diseases involving autonomic dysregulation. Heart rate variability (HRV) is a noninvasive method for assessing sympathovagal balance. The low frequency/high frequency (LF/HF) spectral power ratio is an index of sympathovagal influence on heart rate and of cardiovascular health. This study tests the hypothesis that from rest to 30% to 50% of peak oxygen consumption, the nonlinear Conte-Zbilut-Federici (CZF) method of computing the LF/HF ratio is a more reliable index of changes in the HRV than linear methods are. Methods: The subjects of this study were 10 healthy young adults. Electrocardiogram RR intervals were measured during 6-minute periods of rest and aerobic exercise on a cycle ergometer at 30% and 50% of peak oxygen consumption ($VO_{2peak}$). Results: The frequency domain CZF computations of the LF/HF ratio and the time domain computations of the standard deviation of normal-to-normal intervals (SDNN) decreased sequentially from rest to 30% $VO_{2peak}$ (P < 0.001) to 50% $VO_{2peak}$ (P < 0.05). The SDNN and the CZF computations of the LF/HF ratio were positively correlated (Pearson's r = 0.75, P < 0.001). fast Fourier transform (FFT), autoregressive (AR) and Lomb periodogram computations of the LF/HF ratio increased only from rest to 50% $VO_{2peak}$. Conclusion: Computations of the LF/HF ratio by using the nonlinear CZF method appear to be more sensitive to changes in physical activity than computations of the LF/HF ratio by using linear methods. Future studies should determine whether the CZF computation of the LF/HF ratio improves evaluations of pharmacopuncture and other treatment modalities.

Enhanced Variable Structure Control With Fuzzy Logic System

  • Charnprecharut, Veeraphon;Phaitoonwattanakij, Kitti;Tiacharoen, Somporn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.999-1004
    • /
    • 2005
  • An algorithm for a hybrid controller consists of a sliding mode control part and a fuzzy logic part which ar purposely for nonlinear systems. The sliding mode part of the solution is based on "eigenvalue/vector"-type controller is used as the backstepping approach for tracking errors. The fuzzy logic part is a Mamdani fuzzy model. This is designed by applying sliding mode control (SMC) method to the dynamic model. The main objective is to keep the update dynamics in a stable region by used SMC. After that the plant behavior is presented to train procedure of adaptive neuro-fuzzy inference systems (ANFIS). ANFIS architecture is determined and the relevant formulation for the approach is given. Using the error (e) and rate of error (de), occur due to the difference between the desired output value (yd) and the actual output value (y) of the system. A dynamic adaptation law is proposed and proved the particularly chosen form of the adaptation strategy. Subsequently VSC creates a sliding mode in the plant behavior while the parameters of the controller are also in a sliding mode (stable trainer). This study considers the ANFIS structure with first order Sugeno model containing nine rules. Bell shaped membership functions with product inference rule are used at the fuzzification level. Finally the Mamdani fuzzy logic which is depends on adaptive neuro-fuzzy inference systems structure designed. At the transferable stage from ANFIS to Mamdani fuzzy model is adjusted for the membership function of the input value (e, de) and the actual output value (y) of the system could be changed to trapezoidal and triangular functions through tuning the parameters of the membership functions and rules base. These help adjust the contributions of both fuzzy control and variable structure control to the entire control value. The application example, control of a mass-damper system is considered. The simulation has been done using MATLAB. Three cases of the controller will be considered: for backstepping sliding-mode controller, for hybrid controller, and for adaptive backstepping sliding-mode controller. A numerical example is simulated to verify the performances of the proposed control strategy, and the simulation results show that the controller designed is more effective than the adaptive backstepping sliding mode controller.

  • PDF