• Title/Summary/Keyword: nonequilibrium air

Search Result 38, Processing Time 0.017 seconds

Behaviors of Mach Disk in Underexpanded Supersonic Moist Jet (초음속 습공기 제트에서 발생하는 마하디스크의 거동)

  • 백승철;김희동;권순범
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.87-90
    • /
    • 2003
  • It has been well known that the major feature of compressible flow fields might be different depending on their formation processes. The objectives of the present study is to investigates the effect of jet development on the time history of supersonic jet flow field, accompanying nonequilibrium condensation. Especially, the behaviors of Mach disk diameter and location in a supersonic moist air jet are presented in terms of nozzle pressure ratio and initial relative humidity. The relative humidity of moist air is controlled at the nozzle supply, and the nozzle pressure ratio is varied to obtain the moderately underexpanded flows at the exit of the nozzle, installed in an indraft wind tunnel. It is found that at the same pressure ratio the Mach disk diameter increases with the initial relative humidity, while moves further upstream. Furthermore, the values of Mach disk diameter and location for increasing pressure ratio show larger than those for increasing.

  • PDF

Passive control of condensation shock wave in supersonic nozzles (초음속 노즐에서 발생하는 응축충격파의 피동제어)

  • Kim, Hui-Dong;Gwon, Sun-Beom;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.3980-3990
    • /
    • 1996
  • When a moist air is rapidly expanded in a supersonic nozzle, nonequilibrium condensation occurs at a supersaturation state. Condensation shock wave appears in the nozzle flow if the releasing latent heat due to condensation goes beyond a critical value. It has been known that self-excited oscillations of the condensation shock wave generate in an air or a steam nozzle flow with a large humidity. In the present study, the passive control technique using porous wall with a cavity underneath was applied to the condensation shock wave. The effects of the passive control on the steady and self-excited condensation shock waves were experimentally investigated by Schlieren visualization and static pressure measurements. The result shows that the present passive control is a useful technique to suppress the self-excited oscillations of condensation shock wave.

Study on the Passive Shock/Boundary Layer Interaction Control in Transonic Moist Air Flow (습공기 유동에서 발생하는 충격파와 경계층 간섭의 피동제어에 관한 연구)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.21-29
    • /
    • 2002
  • In the present study, a passive control method, using a porous wall and cavity system, is applied to the shock wave/boundary layer interactions in transonic moist air flow. The two-dimensional, unsteady, compressible, Navier-Stokes equations, which are fully coupled with a droplet growth equation, are solved by the third-order MUSCL type TVD finite difference scheme. Baldwin-Lomax model is employed to close the governing equations. In order to investigate the effectiveness of the present control method, the total pressure loss of the flow and the time-dependent behaviour of shock motions are analyzed in detail. The computed results show that the present passive control method considerably reduces the total pressure losses due to the shock wave/boundary layer interaction in transonic moist air flow and suppresses the unsteady shock wave motions over the airfoil as well. It is also found that the location of the porous ventilation significantly affects the control effectiveness.

Thw Characteristic of Supersonic Flow with Condensation along a Wavy Wall of Small Amplitute in Channel (미소진폭 파형벽을 가진 유로내에서 凝縮을 수반하는 超音速 유동의 特性 - 수치해석 결과)

  • 김병지;권순범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1990-1997
    • /
    • 1992
  • The characteristic of supersonic flow with condensation along a wavy wall of small amplitude in channel is investigated through the direct marching method of characteristics. The very complex problem that may appear where the overlapping of the same family characteristics occurs, can be satisfactorily solved by means of the modified method suggested by Zucrow. In the present study for the case of supersonic moist air flow, the dependency of location of formation and reflection of oblique shock wave generated by the wavy wall, and the distributions of flow properties, on the relative humidity and temperature at the entrance of wavy wall is clarified by plots of streamline, ios-Mach umber and ios-flow properties. Also, it is confirmed that the wavy wall plays an important key role in the formation of oblique shock wave, and that the effect of condensation on the flow field appears apparently.

Passive Control of Condensation Shock Wave in a Transonic Nozzle (천음속 노즐에서 발생하는 응축충격파의 피동제어)

  • Kim, Hui-Dong;Baek, Seung-Cheol;Gwon, Sun-Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.666-674
    • /
    • 2002
  • A rapid expansion of the moist air or stream through transonic nozzle often leads to not-equilibrium condensation shock, causing a considerable amount of energy loss to the entire flow field. Depending on amount of heat released, condensation shock wave occurs in the nozzle and interacts with the boundary layer flow. In the current study, a passive control technique using a porous wall with a plenum cavity underneath is applied for purpose of alleviation the condensation shock wave in a transonic nozzle. A droplet growth equation is incorporated into two-dimensional wavier-Stokes equation systems. Computations are carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. An experiment using an indraft transonic wind tunnel is made to validate the present computational results. The results obtained show that the magnitude of condensation shock wave is reduced by the current passive control method.

Generation of Low Temperature Plasma at Atmospheric Pressure and its Application to Si Etching in Open Air (대기압 비평형 플라스마의 발생 및 규소(Si)식각에의 응용)

  • Lee, Bong-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.409-412
    • /
    • 2002
  • Under atmospheric pressure, apparently homogeneous and stable plasma can be generated from insulator barrier rf plasma generators each of which has an rf powered cathode and a grounded anode covered with a dielectric insulating material. In order to characterize the generating plasma under atmospheric pressure, some basic characteristic have been evaluated by the Langmuire probe method as well as by optical emission spectroscopy. From the result of plasma characteristics, the generated plasma was verified to be nonequilibrium; T(electron)>T(excitation)>T(gas). High rate Si(100) etching (($1.5{\mu}m$/min) were achieved by using He plasma containing a small amount of $CF_4$.

A Study for the Advanced Design of Rotary Kiln Incinerator III : 3-Dimensional CC1$_4$/CH$_4$Gas-phase Turbulent Reaction Model (로타리 킬른 소각로 고도 설계를 위한 연구 III : 3차원 CC1$_4$/CH$_4$기상난류 반응 모델)

  • 엄태인;장동순;채재우
    • Journal of Energy Engineering
    • /
    • v.2 no.1
    • /
    • pp.54-67
    • /
    • 1993
  • Two turbulent reaction models of the premixed CC1$_4$/CH$_4$/air mixture are successfully incorporated in a 3-dimensional computer program and is applied for Dow Chemical incinerator equipped with two main off-center burners. The first reaction model is fast chemistry model(model 1), in which chemical reaction is governed by the turbulent mixing itself. And the second one is nonequilibrium model(model 2), where the effect of the chemical kinetics due to the presence of CC1$_4$is considered by the incorporation of the burning velocity data of CC1$_4$. The second model not only shows the flame inhibition trend due to the presence CC1$_4$compound, but also predicts qualitatively the vortical stratification of the CC1$_4$concentration appeared experimentally at the kiln exit. Other comparisions of two models are made in detail.

  • PDF

Air Cavity Effects on the Absorbed Dose for 4-, 6- and 10-MV X-ray Beams : Larynx Model (4-, 6-, 10-MV X-선원에서 공기동이 흡수선량에 미치는 효과 : 후두모형)

  • Kim Chang-Seon;Yang Dae-Sik;Kim Chul-Yong;Choi Myung-Sun
    • Radiation Oncology Journal
    • /
    • v.15 no.4
    • /
    • pp.393-402
    • /
    • 1997
  • Purpose : When an x-ray beam of small field size is irradiated to target area containing an air cavity, such as larynx, the underdosing effect is observed in the region near the interfaces of air and soft tissue. With a larynx model, air cavity embedded in tissue-equivalent material, this study is intonded for examining Parameters, such as beam quality, field size, and cavity size, to affect the dose distribution near the air cavity. Materials and Methods : Three x-rar beams, 4-, 6- and 10-MV, were employed to Perform a measurement using a 2cm $(width){\times}L$ (length in cm, one side of x-ray field used 2cm (height) air cavity in the simulated larynx. A thin window parallel-plate chamber connected to an electrometer was used for a dosimetry system. A ratio of the dose at various distances from the cavity-tissue interface to the dose at the same points in a homogeneous Phantom (ebservedlexpected ratio, O/E) normalized buildup curves, and ratio of distal surface dose to dose at the maximum buildup depth were examined for various field sizes. Measurement for cavity size effect was performed by varying the height (Z) of the air cavity with the width kept constant for several field sizes. Results : No underdosing effect for 4-MV beam for fields larger than $5cm\times5cm$ was found For both 6- and 10-MV beams, the underdosing portion of the larynx at the distal surface was seen to occur for small fields, $4cm\times4cm\;and\;5cm\times5cm$. The underdosed tissue was increased in its volume with beam energy even for similar surface doses. The relative distal surface dose to maximum dose was changed to 0.99 from 0.95, 0.92, and 0.91 for 4-, 6-, and 10-MV, respectively, with increasing field size, $4cm\times4cm\;to\;8cm\times8cm$, For 6- and 10-MV beams, the dose at the surface of the cavity is measured less than the predicted by about two and three percent. respectively. but decrease was found for 4-MV beam for $5cm\times5cm$ field. For the $4cm\timesL\timesZ$ (height in cm). varying depth from 0.0 to 4.8cm, cavity, O/E> 1.0 was observed regardless of the cavity size for any field larger than about $8cm\times8cm$. Conclusion : The magnitude of underdosing depends on beam energy, field size. and cavity size for the larynx model. Based on the result of the study. caution must be used when a small field of a high quality x-ray beam is irradiated to regions including air cavities. and especially the region where the tumor extends to the surface. Low quality beam. such as. 4-MV x-ray, and larger fields can be used preferably to reduce the risk of underdosing, local failure. In the case of high quality beams such as 6- and 10-MV x-rays, however. an additional boost field is recommended to add for the compensation of the underdosing region when a typically used treatment field. $8cm\times8cm$, is employed.

  • PDF