• Title/Summary/Keyword: nondestructive strength equation

Search Result 25, Processing Time 0.023 seconds

Comparison Study on Nondestructive Strength Equation Based on Probability for Bridges (확률론적 방법을 적용한 도로교량의 비파괴 압축강도식 평가)

  • Kim, Hun-Kyom
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.39-46
    • /
    • 2018
  • PURPOSES: This study is to estimate nondestructive strength equation based on probability for bridges using field test data. METHODS : In this study, a series of the field inspection and the test have been performed on 297 existing bridges, in order to evaluate the bridges, based on the test results of the in-depth inspection, and the estimated strengths by means of the nondestructive strength equations are analyzed and compared with results of the core specimen strengths. RESULTS : According to results of analyses, In case of standard design compressive strength of concrete is 18MPa, 21MPa, similar reliability of RILEM equation were 0.89~0.90, but in case of standard design compressive strength of concrete is 35MPa, 40MPa were 0.4~0.56. According to standard design compressive strength of concrete is 40MPa, similar reliability of ultrasonic pulse velocity method equation were 0.56. CONCLUSIONS :RILEM equation had high similar reliability than other equation in case of standard design compressive strength of concrete is 18MPa, 21MPa, but had low similar reliability than other equation in case of standard design compressive strength of concrete is 35MPa, 40MPa. and ultrasonic pulse velocity method equation had low similar reliability than other equation in case of standard design compressive strength of concrete is 40MPa.

Estimation of Nondestructive Strength Equations Based on the Results of In-situ Concrete Strength for Existing Bridges (국내 교량의 현장 코어강도를 활용한 개선된 비파괴강도 추정식 제안)

  • Kim, Hun-Kyom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.98-104
    • /
    • 2018
  • Nondestructive strength Equations are commonly used to determine the strength of concrete. However, the application of the existing equations may include many errors because this method is proposed on the basis of limited experimental parameters while actual bridges have various parameters such as conditions of concrete mixtures, properties of concrete strength, etc. Also, the error among the existing equations causes the confusion when engineers select the proper estimation equation for the concerned bridge. In this study, a series of the field inspection and the test have been performed on 297 existing bridges, in order to evaluate the bridges, based on the test results of the in-depth inspection, and the estimated strengths by means of the nondestructive strength equations are analyzed and compared with results of the core specimen strengths. According to results of analyses, the nondestructive strength equation proposed by CNDT Committee of Architectural Institute of Japan had high relationship with core strength. However, the strengths predicted by this equation, are underestimated when concrete's strengths are over 30 MPa, otherwise, they are overestimated. Also in this paper, based on the relationship between the estimated nondestructive concrete strengths and the core specimen strengths the modified strength equation through simple correlation analysis is proposed.

A New Form of Nondestructive Strength-Estimating Statistical Models Accounting for Uncertainty of Model and Aging Effect of Concrete

  • Hong, Kee-Jeung;Kim, Jee-Sang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.230-234
    • /
    • 2009
  • As concrete ages, the surrounding environment is expected to have growing influences on the concrete. As all the impacts of the environment cannot be considered in the strength-estimating model of a nondestructive concrete test, the increase in concrete age leads to growing uncertainty in the strength-estimating model. Therefore, the variation of the model error increases. It is necessary to include those impacts in the probability model of concrete strength attained from the nondestructive tests so as to build a more accurate reliability model for structural performance evaluation. This paper reviews and categorizes the existing strength-estimating statistical models of nondestructive concrete test, and suggests a new form of the strength-estimating statistical models to properly reflect the model uncertainty due to aging of the concrete. This new form of the statistical models will lay foundation for more accurate structural performance evaluation.

Correlation between Longitudinal Wave Velocity and Strength of Early-aged Concrete (초기 재령 콘크리트의 종파 속도와 강도의 상관관계)

  • 이휘근;이광명;김동수
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.67-74
    • /
    • 2000
  • The usage of nondestructive testing on early-aged concrete leads to enhacned safty and allows effective scheduling of construction, thus making it possible to maximize the time and cost efficiencies. In this study, a reliable nondestructive strength evaluation method for early-aged concrete using the longitudinal wave velocity is proposed. Compression tests were performed to examine factors influencing the velocity-strength relationship of concrete, such as water-cement (w/c) ratio, fine aggregate ratio, curing temperature, and curing condition. The test results show that a change in the w/c ratio and curing temperature has minor effect on the velocity-strength relationship/ However, curing condition significantly influences the velocity-strength relationship of early-aged concrete. Moreover, the longitudinal wave velocity increases with decreasing fine aggregate ratio. It is concluded from this study that the strength evaluation of early-age concrete can be achieved by a nonlinear equation which considers the effects of curing condition and fine aggregate ratio.

A Study on The Compressive Strength Correlation by Various Nondestructive Test Method (각종 비파괴 검사법에 의한 압축강도 상관연구)

  • 최원호;신도철;이대우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.767-772
    • /
    • 1998
  • schumidt hammer and ultra-sonic method are commonly used for concrete compressive strength test in a construction field. At present, various kinds of equations for estimation of strength are present, which have been used in a construction field. The purpose of this study is to evaluate the correlation between estimation strength by presentation equations and destructive strength to test specimen, and find out which is a suitable equation for this construction site. In this study, a strength test was carried out destructive test by means of core sampling. Non destructive test was conducted Schumidt hammer and ultra-sonic method, the experimental parameter were concrete age, test method and strength level. It is demonstrated that the correlation behavior of concrete strength in this study good due to the performs analysis of correlation between core strength and nondestructive strength.

  • PDF

Material property evaluation of high strength concrete using conventional and nondestructive testing method (재래 및 비파괴검사를 이용한 고강도 콘크리트의 재료특성에 관한 연구)

  • 조영상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.629-634
    • /
    • 2001
  • This study is to characterize the material property of early age high performance concrete emphasizing compressive strength using nondestructive testing methods. Three high performance concrete slabs of 600, 850 and 1100kg/$cm^{2}$ compressive strengths were prepared together with cylinders from same batches. Cylinder tests were peformed at the ages of 7, 14, 21 and 28 days after pouring. Using the impact echo method, the compression wave velocities were obtained based on different high performance concrete ages and compressive strengths. The equation to obtain the compressive strengths of high performance concrete has been developed using the obtained compression wave velocities. Using the SASW (spectral analysis of surface wave) method, the equation have also been developed to obtain the compressive strengths of high performance concrete based on the surface wave velocities.

  • PDF

A Study on the proposal of Strength Presumption Equation of Concrete Using Admixture by Nondestructive Testing (비파괴 시험에 의한 혼화재를 사용한 콘크리트의 강도 추정식 제안에 관한 연구)

  • Kim Jeong-Sup;Shin Yong-Seok;Kim Koung-Ok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.3 s.21
    • /
    • pp.59-66
    • /
    • 2006
  • This study aims to estimate strength approximate to actual concrete strength by presenting appropriate non-destructive strength estimation expression with admixtures such as fly ash, blast furnace slag and silica fume which are used as cement substitute and owing to theirs of cement owing to their equal conditions to blending characteristics of concrete used for domestic structures and their recyclable properties. As a result of comparing error rate of existing expressions and this estimation expression, error rate of this estimation is reduced compared to existing expressions and has higher reliability. When conventional concrete expression is applied to admixture concrete, error rate occurs and then this study suggests the following estimation expressions depending on types of admixture concrete.

A New Estimated Strength Equation of Concrete by Penetration Resistance Test (관입시험법에 의한 콘크리트의 압축강도 추정식)

  • 권영웅;신정식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.643-646
    • /
    • 2003
  • This study concerns the new estimated strength equation of concrete by penetration test. There are not only few estimate strength equations of concrete, but also many problems to apply them because of time, cost, easiness, structural damage, reliability and so on. In this study, there performed a series of test for one year and estimated strength equation of concrete as follows; Linear: fck =3.38d - 95.1 ($$r^2$$=88.6%) Quadratic: fck =0.188$$d^2$$- 10.76d + 166.3 ($$r^2$$=96.7%) here, fck : estimated compressive strength of concrete by Mpa d: exposed probe length by mm.

  • PDF

A New Strength Equation of Concrete by Ultrasonic Pulse Velocity Test (초음파시험법에 의한 콘크리트의 강도 추정)

  • Yoo Jae-Eun;Park Song-Chul;Kim Min-Su;Kwon Young-Wung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.129-132
    • /
    • 2004
  • This study concerns the new strength equation of concrete by ultrasonic pulse velocity test. There are not only few estimate strength equations of concrete by ultrasonic pulse velocity test, but also many problems to apply them because of time, cost, easiness, structural damage, reliability and so on. For this study, there performed a series of test and proposed equations as follows; $$Linear\;:\;f_{kc}=65.43Vp-207.18\;r^2=80.8\%$$ $$Quadratic\;:\;f_{ck}=42.35Vp^2-250.71Vp+378.8\;r^2=83.7\%$$ here, fck : Estimated compressive strength of concrete by MPa Vp: Ultrasonic Pulse Velocity of concrete by km/sec.

  • PDF

A New Strength Equation of Concrete by Schmidt Hammer Test (슈미트햄머 시험법에 의한 콘크리트 강도 추정식)

  • Park Song-chul;Yoo Jae-Eun;Kim Min-Su;Kwon Young-Wung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.133-136
    • /
    • 2004
  • This study concerns the. new equation of concrete strength by schmidt hammer test. There are not only few estimate strength equations of concrete by schmidt hammer test, but also many problems to apply them because of time, cost, easiness, structural damage, reliability and so on. For this study, there performed a series of schmidt hammer test with in existing 730days' concrete structures and proposed equations as follows; $$Linear\;:\;f_{ck}=2.18R-40.54\;(r^2=77.7\%)$$ $$Quadratic\;:\;f_{ck}=0.076R^2-2.92R+40.04\;(R^2= 85.5\%)$$ here, fck : Estimated compressive strength of concrete by MPa, R : Rebound index of concrete.

  • PDF