This paper presents new techniques under development for monitoring the health and vibration of the active components in nuclear power plants, The purpose of this study is to develop an automated system for condition classification of a check valve one of the components being used extensively in a safety system of a nuclear power plant. Acoustic emission testing for a check valve under controlled flow loop conditions was performed to detect and evaluate disc movement for valve failure such as wear and leakage due to foreign object interference in a check valve, It is clearly demonstrated that the evaluation of different types of failure types such as disc wear and check valve leakage were successful by systematically analyzing the characteristics of various AE parameters, It is also shown that the leak size can be determined with an artificial neural network.
최근 산업 발전에 따라 철강 제품의 수요 증가와 함께 품질의 고급화에 대한 요구도 점차 증가하고 있는데, 이러한 수요자의 요구에 부응하기 위해 철강업계는 냉연 강판 표면결함검출기(surface defect detector; SDD)를 도입 운용하고 있다. 그러나 현재 국내 철강 제조업체들이 보유하고 있는 상용 SDD는 결함의 검출에는 매우 효율적이지만 결함의 분류에는 아직 만족할만한 성능을 보여주지 못하고 있다. 그 이유는 SDD가 결함 분류를 위해 채택한 분류표분류기(classification table; CT)는 시험 표본의 모든 특징값들이 분류표의 범위 내에 있을 때만 결함의 분류를 정확히 수행하기 때문에 결함 분류 정확도가 낮을 뿐 아니라, 분류 법칙의 설정을 작업자의 수작업에 의존하고 있어 현장 적용을 더욱 어렵게 하고 있다. 이러한 단점을 극복하기 위해 본 연구에서 학습 표본으로부터 확률밀도함수를 추정하고 여기에서 분류 법칙을 자동적으로 결정하는 방법을 제시하였고, 강화분류표분류기(enhanced classification table; ECT)와 확률신경회로망분류기(probabilistic neural network; PNN)를 새롭게 제안하여 이들 분류기를 실제적인 문제에 적용하였다. 그 결과 ECT와 PNN 모두 결함 분류 성능을 획기적으로 높일 수 있는 좋은 방법이며, 특히 PNN은 아주 구별하기 어려운 결함도 구별해내는 능력이 있을 뿐 아니라, 병렬 처리 능력을 가지고 있기 때문에 다량의 데이터를 실시간으로 처리해야 하는 경우에 적용할 수 있는 매우 효율적인 분류기임을 확인하였다.
Flaw classification(determination of the flaw type) and flaw sizing (prediction of the flaw shape, orientation and sizing parameters) are very important issues in ultrasonic nondestructive evaluation of weldments. In this work, new techniques for both classification and sizing of flaws in weldments are described together with extensive review of previous works on both topics. In the area of flaw classification, a methodology is developed which can solve classification problems using probabilistic neural networks, and in the area of flaw sizing, a time-of-flight equivalent(TOFE) sizing method is presented.
한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
/
pp.403-412
/
1993
This paper presents the progress of the development of a nondestructive technique for the classification of normal, septicemic , and cadaver poultry carcasses by the Instrumentation and Sensing Laboratory at Beltsville, Maryland, U.S.A. The Sensing technique is based on the diffuse reflectance spectroscopy of poultry carcasses.
In modern high performance engineering applications, the structural integrity of materials and structures are quite often evaluated using fracture mechanics. This evaluation in turn requires information on the flaw geometry (location, type, shape, size, and orientation). The ultrasonic nondestructive evaluation (NDE) method is one technique that is commonly used to provide such information. Flaw classification (determination of the flaw type ) and flaw sizing (prediction of the flaw shape, orientation and sizing parameters) are very important issues for quantitative ultrasonic NDE. In this paper new approaches to both classification and sizing of flaws are described together with extensive review of previous works on both topics. In the area of flaw classification, a methodology is developed which can solve classification problems using probabilistic neural networks, and in the area of flaw sizing, a time-of-flight equivalent (TOFE) sizing method is presented. The techniques proposed here are in a form that can be used directly in many practical applications to quantitative estimates of the flaw's significance.
초음파 검사 방법은 여러 가지 물질들의 흠집이나 틈새, 티끌 등을 감지해내는데 널리 쓰이고 있다. 그 중 초음파 신호를 분석하는 절차는 전체의 신호처리 과정에서 아주 중요한 역할을 담당하고 있다. 이 논문은 최소평균 제곱 (LMS) 알고리즘을 이용하여 핵 전력 발전소에서 쓰이는 증기 발생기 튜브로부터 감지된 초음파 비파괴검사 신호를 분류 해내는 것에 관한 것이다. 이 초음파 신호는 튜브내의 흠집이나 틈새로부터 감지된 신호일수도 있고 또는 튜브 내의 침전물에 의해서 발생된 신호일 수도 있는데 이 두 가지 신호는 매우 유사하기 때문에 반드시 분류를 해내어 침전물에 의한 신호일 경우는 무방하지만 흠집이나 갈라진 틈새에서 나오는 신호일 경우는 더 이상의 오염이나 사고 등을 방지하기 위해 수리 또는 교체 등의 후속 조치로 이어져야 한다. 이러한 절차를 밟기 위하여 증기 발생기 튜브의 내부에서의 초음파 센서로부터 증기 발생기 튜브 사이의 거리를 측정하는데 모델링 기법에 기반한 deconvolution 방법이 제시되었으며 이 방법은 space alternating generalized expectation maximization (SAGE) 알고리즘을 이차원 미분 파라미터인 Hessian의 사용으로 인하여 수렴 속도가 빠른 Newton-Raphson 알고리즘과 함께 병행 사용하여 초음파 신호의 초점 도달 시간과 그 크기를 측정하여 초점 도달 거리에 따라 두 종류의 신호를 분류, 차별화 하는 기법이다. 이 알고리즘을 이용하여 흠집이나 틈새로부터 나온 신호일 경우와 퇴적물에 의해 나온 신호일 경우로 분류되었고 그 결과가 이 논문에 제시되었다.
본 논문에서는 원전SG세관 결함 크기 추정을 위한 새로운 구조의 추정시스템에 대한 연구를 수행한다. 기존의 연구에서는 결함 크기를 추정하기 위하여 각각의 결함 형태별로 결함크기추정시스템을 설계하였다. 이와 같은 경우, 추정시스템의 구조가 복잡해지고 결함 크기 추정 이전에 수행하는 결함형태분류기의 정확성이 떨어질 경우 결함 크기 추정 성능도 결과적으로 악화될 수밖에 없다. 이에 본 논문에서는 결함 형태 분류 과정을 필요로 하지 않는 결함크기추정시스템의 성능을 분석하고 이를 향상시키기 위한 방안을 연구하였다. 기존의 추정시스템은 각각의 결함 형태별로 특화된 추정기를 사용하기 때문에 추정 성능이 훨씬 뛰어날 것으로 예상되었지만, 실험 결과 두 추정시스템의 성능 차이는 그리 크지 않다는 것을 알 수 있었다. 따라서 결함형태분류기의 정확성이 완벽하지 않을 경우, 본 논문에서 제안한 구조의 추정기가 효과적으로 사용될 수 있을 것으로 기대된다.
웨이블릿 변환과 인공신경망을 이용하여 AE 신호를 분류하는 소프트웨어 패키지를 개발하였다. 웨이블릿 변환으로는 연속 웨이블릿 변환과 이산 웨이블릿 변환을 모두 고려하였으며, 인공신경망의 모델로는 오류 역전파 인공신경망을 사용하였다. 분류에 사용된 AE 신호는 용접부에 인공결함을 가진 시편의 3점 굽힘시험에서 발생한 신호이다. 개발된 소프트웨어 패키지를 이용하여 이 신호를 웨이블릿 변환시켜 생성된 시간-주파수 평면상에서 특징값을 추출하고 이를 인공신경망에 학습하여 인공신경망 분류기를 설계하고 검증하였다. 본 연구에서 개발된 소프트웨어 패키지를 이용한 AE 신호 분류법이 유용함을 보이고, 또한 연속 웨이블릿 변환과 이산 웨이블릿 변환에 의한 분류 결과를 비교하였다.
음향 방출 신호의 수집 및 처리, 특징값 추출 및 선택, 분류기 설계 및 검증 과정 등을 수행할 수 있는 신호 형상 인식 프로그램을 개발하고, 이를 오스테나이트계 STS304 용접부의 인공 결함 분류 연구에 적용하였다. 특히 분류기로는 선형 함수 분류기, 경험적 Bayesian 분류기, 신경 회로망 분류기를 사용하였고, 센서는 광대역 센서와 공진형 센서를 사용하여 분류기간의 비교와 센서간의 차이점을 검토하였다. 그 결과 신경 회로망 분류기가 다른 분류기에 비해 높은 인식률을 주었고, 공진형 센서보다는 광대역 센서를 통해 받은 신호가 더 높은 인식률을 주었다.
Purpose: Nondestructive evaluation of seed viability is a highly demanded technique in the seed industry. In this study, hyperspectral imaging system was used for discrimination of viable and non-viable radish seeds. Method: The spectral data with the range from 400 to 1000 nm measured by hyperspectral reflectance imaging system were used. A calibration and a test models were developed by partial least square discrimination analysis (PLS-DA) for classification of viable and non-viable radish seeds. Either each data set of visible (400~750 nm) and NIR (750~1000 nm) spectra and the spectra of the combined spectral ranges were used for developing models. Results: The discrimination accuracy of calibration was 84% for visible range and 76.3% for NIR range. The discrimination accuracy of test was 84.2% for visible range and 75.8% for NIR range. The discrimination accuracies of calibration and test with full range were 92.2% and 92.5%, respectively. The resultant images based on the optimal PLS-DA model showed high performance for the discrimination of the nonviable seeds from the viable seeds with the accuracy of 95%. Conclusions: The results showed that hyperspectral reflectance imaging has good potential for discriminating nonviable radish seeds from massive amounts of viable seeds.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.