• Title/Summary/Keyword: nonalcoholic fatty liver disease

Search Result 101, Processing Time 0.037 seconds

Correlation between Transient Elastography (Fibroscan®) and Ultrasonographic and Computed Tomographic Grading in Pediatric Nonalcoholic Steatohepatitis

  • Lee, Ji Eun;Ko, Kyung Ok;Lim, Jae Woo;Cheon, Eun Jung;Song, Young Hwa;Yoon, Jung Min
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.25 no.3
    • /
    • pp.240-250
    • /
    • 2022
  • Purpose: This study aimed to examine the advantages and usefulness of transient elastography (Fibroscan®) in diagnosing non-alcoholic steatohepatitis in children and adolescents compared to those of abdominal computed tomography and liver ultrasonography. Methods: Forty-six children and adolescent participants aged between 6 and 16 years who underwent transient elastography (Fibroscan®) as well as liver ultrasonography or abdominal computed tomography were included. Thirty-nine participants underwent liver ultrasonography and 11 underwent computed tomography. The physical measurements, blood test results, presence of metabolic syndrome, and the degree of liver steatosis and liver fibrosis were analyzed, and their correlations with transient elastography (Fibroscan®), abdominal computed tomography, and liver ultrasonography, as well as the correlations between examinations, were analyzed. Results: Thirty-six participants (78.3%) were boys, and the mean age was 12.29±2.57 years, with a mean body mass index of 27.88±4.28. In the 46 participants, the mean values for aspartate aminotransferase, alanine aminotransferase, and total bilirubin were 89.87±118.69 IU/L, 138.54±141.79 IU/L, and 0.77±0.61 mg/dL, respectively. Although transient elastography (Fibroscan®) and abdominal computed tomography grading had a statistically significant positive correlation with aspartate aminotransferase and alanine aminotransferase values, the correlations between the results of grading performed by transient elastography (Fibroscan®), abdominal computed tomography, and liver ultrasonography were not statistically. Conclusion: We confirmed that each examination was correlated with the results of some blood tests, suggesting the usefulness and possibility of diagnosis and treatment of steatohepatitis mediated by transient elastography (Fibroscan®) in the department of pediatrics.

Mentha canadensis attenuates adiposity and hepatic steatosis in high-fat diet-induced obese mice

  • Youngji Han;Ji-Young Choi;Eun-Young Kwon
    • Nutrition Research and Practice
    • /
    • v.17 no.5
    • /
    • pp.870-882
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Obesity is a major risk factor for metabolic syndrome, a global public health problem. Mentha canadensis (MA), a traditional phytomedicine and dietary herb used for centuries, was the focus of this study to investigate its effects on obesity. MATERIALS/METHODS: Thirty-five male C57BL/6J mice were randomly divided into 2 groups and fed either a normal diet (ND, n = 10) or a high-fat diet (HFD, n = 25) for 4 weeks to induce obesity. After the obesity induction period, the HFD-fed mice were randomly separated into 2 groups: one group continued to be fed HFD (n = 15, HFD group), while the other group was fed HFD with 1.5% (w/w) MA ethanol extract (n = 10, MA group) for 13 weeks. RESULTS: The results showed that body and white adipose tissue (WAT) weights were significantly decreased in the MA-supplemented group compared to the HFD group. Additionally, MA supplementation enhanced energy expenditure, leading to improvements in plasma lipids, cytokines, hepatic steatosis, and fecal lipids. Furthermore, MA supplementation regulated lipid-metabolism-related enzyme activity and gene expression, thereby suppressing lipid accumulation in the WAT and liver. CONCLUSIONS: These findings indicate that MA has the potential to improve diet-induced obesity and its associated complications, including adiposity, dyslipidemia, hepatic steatosis, and inflammation.

Vitamin C Inhibits Visceral Adipocyte Hypertrophy and Lowers Blood Glucose Levels in High-Fat-Diet-Induced Obese C57BL/6J Mice

  • Park, Younghyun;Jang, Joonseong;Lee, Dongju;Yoon, Michung
    • Biomedical Science Letters
    • /
    • v.24 no.4
    • /
    • pp.311-318
    • /
    • 2018
  • Vitamin C (ascorbic acid) supplementation has been suggested to negatively correlate with obesity in humans and other animals. Previous studies, including ours, have demonstrated that a high-fat diet (HFD) induces obesity and related diseases such as hyperlipidemia, hyperglycemia, insulin resistance, and nonalcoholic fatty liver disease. Here, we investigated the effects of vitamin C on visceral adipocyte hypertrophy and glucose intolerance in C57BL/6J mice. Mice received a low-fat diet (LFD, 10% kcal fat), HFD (45% kcal fat), or the same HFD supplemented with vitamin C (HFD-VC, 1% w/w) for 15 weeks. Visceral adiposity and glucose intolerance were examined using metabolic measurements, histology, and gene expression analyses. Mice in the HFD-VC supplementation group had reduced body weight, mesenteric fat mass, and mesenteric adipocyte size compared with HFD-fed mice. Vitamin C intake in obese mice also decreased the mRNA levels of lipogenesis-related genes (i.e., stearoyl-CoA desaturase 1 and sterol regulatory element-binding protein 1c) in mesenteric adipose tissues, inhibited hyperglycemia, and improved glucose tolerance. In addition, vitamin C attenuated the HFD-induced increase in the size of pancreatic islets. These results suggest that vitamin C suppresses HFD-induced visceral adipocyte hypertrophy and glucose intolerance in part by decreasing the visceral adipose expression of genes involved in lipogenesis.

Ginseng-plus-Bai-Hu-Tang ameliorates diet-induced obesity, hepatic steatosis, and insulin resistance in mice

  • Lu, Hsu-Feng;Lai, Yu-Heng;Huang, Hsiu-Chen;Lee, I-Jung;Lin, Lie-Chwen;Liu, Hui-Kang;Tien, Hsiao-Hsuan;Huang, Cheng
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.238-246
    • /
    • 2020
  • Background: Dietary fat has been suggested to be the cause of various health issues. Obesity, hypertension, cardiovascular disease, diabetes, dyslipidemia, and kidney disease are known to be associated with a high-fat diet (HFD). Obesity and associated conditions, such as type 2 diabetes mellitus and nonalcoholic fatty liver disease (NAFLD), are currently a worldwide health problem. Few prospective pharmaceutical therapies that directly target NAFLD are available at present. A Traditional Chinese Medicine, ginseng-plus-Bai-Hu-Tang (GBHT), is widely used by diabetic patients to control glucose level or thirst. However, whether it has therapeutic effects on fat-induced hepatic steatosis and metabolic syndrome remains unclear. Methods: This study was conducted to examine the therapeutic effect of GBHT on fat-induced obesity, hepatic steatosis, and insulin resistance in mice. Results: GBHT protected mice against HFD-induced body weight gain, hyperlipidemia, and hyperglycemia compared with mice that were not treated. GBHT inhibited the expansion of adipose tissue and adipocyte hypertrophy. No ectopic fat deposition was found in the livers of HFD mice treated with GBHT. In addition, glucose intolerance and insulin sensitivity in HFD mice was also improved by GBHT. Conclusion: GBHT prevents changes in lipid and carbohydrate metabolism in a HFD mouse model. Our findings provide evidence for the traditional use of GBHT as therapy for the management of metabolic syndrome.

Ginsenoside Rb3 ameliorates podocyte injury under hyperlipidemic conditions via PPARδ- or SIRT6-mediated suppression of inflammation and oxidative stress

  • Heeseung Oh;Wonjun Cho;Seung Yeon Park;A.M. Abd El-Aty;Ji Hoon Jeong;Tae Woo Jung
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.400-407
    • /
    • 2023
  • Background: Rb3 is a ginsenoside with anti-inflammatory properties in many cell types and has been reported to attenuate inflammation-related metabolic diseases such as insulin resistance, nonalcoholic fatty liver disease, and cardiovascular disease. However, the effect of Rb3 on podocyte apoptosis under hyperlipidemic conditions, which contributes to the development of obesity-mediated renal disease, remains unclear. In the current study, we aimed to investigate the effect of Rb3 on podocyte apoptosis in the presence of palmitate and explore its underlying molecular mechanisms. Methods: Human podocytes (CIHP-1 cells) were exposed to Rb3 in the presence of palmitate as a model of hyperlipidemia. Cell viability was assessed by MTT assay. The effects of Rb3 on the expression of various proteins were analyzed by Western blotting. Apoptosis levels were determined by MTT assay, caspase 3 activity assay, and cleaved caspase 3 expression. Results: We found that Rb3 treatment alleviated the impairment of cell viability and increased caspase 3 activity as well as inflammatory markers in palmitate-treated podocytes. Treatment with Rb3 dosedependently increased PPARδ and SIRT6 expression. Knockdown of PPARδ or SIRT6 reduced the effects of Rb3 on apoptosis as well as inflammation and oxidative stress in cultured podocytes. Conclusions: The current results suggest that Rb3 alleviates inflammation and oxidative stress via PPARδ-or SIRT6-mediated signaling, thereby attenuating apoptosis in podocytes in the presence of palmitate. The present study provides Rb3 as an effective strategy for treating obesity-mediated renal injury.

Preventive Effects of Whole Grain Cereals on Sarcopenic Obesity in High-fat Diet-induced Obese Mice (고지방식이 동물모델에서 통곡물 시리얼의 근감소성 비만 예방 효과)

  • Kim, Mi-Bo;Lee, Sein;Kim, Changhee;Hwang, Jae-Kwan
    • Food Engineering Progress
    • /
    • v.22 no.4
    • /
    • pp.358-365
    • /
    • 2018
  • Whole grain cereal (WGC)-rich diets provide macronutrients that are important for the regulation of energy metabolism. The current study evaluated whether WGCs had a preventive effect on sarcopenic obesity in high-fat diet (HFD)-induced obese mice. C57BL/6N mice were fed a normal diet (ND), ND+WGC, HFD, and HFD+WGC for 12 weeks. WGCs significantly reduced body weight gain, food efficiency ratio, fat mass, and adipocyte size in HFD-induced obese mice. WGCs attenuated HFD-induced nonalcoholic fatty liver disease by decreasing liver weight and hepatic fat accumulation. In addition, WGCs increased muscle strength and muscle mass in HFD-induced obese mice as well as in ND mice. Taken together, WGCs can be employed as functional food materials for the prevention of sarcopenic obesity by inhibiting fat accumulation and increasing muscle mass.

Current Trends and Recent Advances in Diagnosis, Therapy, and Prevention of Hepatocellular Carcinoma

  • Wang, Chun-Hsiang;Wey, Keh-Cherng;Mo, Lein-Ray;Chang, Kuo-Kwan;Lin, Ruey-Chang;Kuo, Jen-Juan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3595-3604
    • /
    • 2015
  • Hepatocellular carcinoma (HCC) has been one of the most fatal malignant tumors worldwide and its associated morbidity and mortality remain of significant concern. Based on in-depth reviews of serological diagnosis of HCC, in addition to AFP, there are other biomarkers: Lens culinaris agglutinin-reactive AFP (AFP-L3), descarboxyprothrombin (DCP), tyrosine kinase with Ig and eprdermal growth factor (EGF) homology domains 2 (TIE2)-espressing monocytes (TEMs), glypican-3 (GPC3), Golgi protein 73 (GP73), interleukin-6 (IL-6), and squamous cell carcinoma antigen (SCCA) have been proposed as biomarkers for the early detection of HCC. The diagnosis of HCC is primarily based on noninvasive standard imaging methods, such as ultrasound (US), dynamic multiphasic multidetector-row CT (MDCT) and magnetic resonance imaging (MRI). Some experts advocate gadolinium diethyl-enetriamine pentaacetic acid (Gd-EOB-DTPA) MRI and contrast-enhanced US as the promising imaging madalities of choice. With regard to recent advancements in tissue markers, many cuting-edge technologies using genome-wide DNA microarrays, qRT-PCR, and proteomic and inmunostaining studies have been implemented in an attempt to identify markers for early diagnosis of HCC. Only less than half of HCC patients at initial diagnosis are at an early stage treatable with curative options: local ablation, surgical resection, or liver transplant. Transarterial chemoembolization (TACE) is considered the standard of care with palliation for intermediate stage HCC. Recent innovative procedures using drug-eluting-beads and radioembolization using Yttrium-90 may exhibit beneficial effects in HCC treatment. During the past few years, several molecular targeted agents have been evaluated in clinical trials in advanced HCC. Sorafenib is currently the only approved systemic treatment for HCC. It has been approved for the therapy of asymptomatic HCC patients with well-preserved liver function who are not candidates for potentially curative treatments, such as surgical resection or liver transplantation. In the USA, Europe and particularly Japan, hepatitis C virus (HCV) related HCC accounts for most liver cancer, as compared with Asia-Pacific regions, where hepatitis B virus (HBV) may play a more important role in HCC development. HBV vaccination, while a vaccine is not yet available against HCV, has been recognized as a best primary prevention method for HBV-related HCC, although in patients already infected with HBV or HCV, secondary prevention with antiviral therapy is still a reasonable strategy. In addition to HBV and HCV, attention should be paid to other relevant HCC risk factors, including nonalcoholic fatty liver disease due to obesity and diabetes, heavy alcohol consumption, and prolonged aflatoxin exposure. Interestingly, coffee and vitamin K2 have been proven to provide protective effects against HCC. Regarding tertiary prevention of HCC recurrence after surgical resection, addition of antiviral treatment has proven to be a rational strategy.

Triglyceride Control Effect of Agrimonia eupatoria L. in Oleic Acid Induced NAFLD-HepG2 Model (올레산 유도 비알콜성 지방간세포에서 용아초의 중성지방 조절효과)

  • Sohn, Eun-Hwa;Kim, Taeseong;Jeong, Yong Joon;Han, Hyo-Sang;Lea, Youngsung;Cho, Young Mi;Kang, Se Chan
    • Korean Journal of Plant Resources
    • /
    • v.28 no.5
    • /
    • pp.635-640
    • /
    • 2015
  • Nonalcoholic fatty liver disease (NAFLD) is a kind of liver inflammation caused by an accumulation of fat in the liver. Patients with NAFLD have an increased risk to develop liver fibrosis, which leads to cirrhosis. To investigate hepatoprotective effects of Agrimonia eupatoria L (A. eupatoria), oleic acid-induced NAFLD in HepG2 cells was used and A. eupatoria was fractionated with ethanol (EtOH), n-hexane, dichloromethane (CH2Cl2), ethyl acetate (EtOAc), n-butanol (BuOH), and H2O. Cells treated with the EtOAc fraction showed the highest lipid accumulation inhibiting effect. A. eupatoria also suppressed triglyceride accumulation and inhibited expression of lipid marker gene, such as a peroxisome proliferator activated receptor γ (PPAR-γ). Moreover, another marker, mRNA expression level of peroxisome proliferator activated receptor α (PPAR-α) was significantly increased by in a dose-dependent manner. These results suggest that A. eupatoria is a potent agent for the treatment of NAFLD.

Nonalcoholic Fatty Liver Disease in Children with Hypopituitarism (뇌하수체저하증 소아에서 발생한 비알코올성 지방간질환)

  • Yoon, Jung-Min;Ko, Jae-Sung;Seo, Jeong-Kee;Shin, Choong-Ho;Yang, Sei-Won;Moon, Jin-Soo;Yang, Hye-Ran;Chang, Ju-Young
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.13 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • Purpose: It has been reported that children with hypopituitarism have features of metabolic syndrome, including obesity, impaired glucose tolerance, and dyslipidemia. The aim of this study was to investigate the clinical features and liver histology of pediatric non-alcoholic fatty liver disease (NAFLD) associated with hypopituitarism. Methods: We reviewed the clinical data of 11 children diagnosed with NAFLD among patients with hypopituitarism. Results: The mean age at the time of diagnosis of hypopituitarism was 10.4${\pm}$3.2 years, and the mean age at the time of diagnosis of NAFLD was 13.1${\pm}$2.7 years. A craniopharyngioma was the most common cause of pituitary dysfunction. At the time of diagnosis of NAFLD, 9 patients (82%) had a body mass index greater than the 85th percentile, 5 patients (45%) had elevated fasting blood glucose levels, and 9 patients (82%) had hypertriglyceridemia. The mean height SD score was significantly lower at the time of diagnosis of NAFLD than at the time of diagnosis of hypopituitarism. Of the six patients who were biopsied, one had cirrhosis, two had non-alcoholic steatohepatitis (NASH) with bridging fibrosis, two had NASH with mild portal fibrosis, and one had simple steatosis. Conclusion: Children with hypopituitarism are at risk of short stature, obesity, dyslipidemia, and NAFLD. The early diagnosis of NAFLD is important in children with hypopituitarism because advanced fibrosis is common.

Severe choline deficiency induces alternative splicing aberrance in optimized duck primary hepatocyte cultures

  • Zhao, Lulu;Cai, Hongying;Wu, Yongbao;Tian, Changfu;Wen, Zhiguo;Yang, Peilong
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1787-1799
    • /
    • 2022
  • Objective: Choline deficiency, one main trigger for nonalcoholic fatty liver disease (NAFLD), is closely related to lipid metabolism disorder. Previous study in a choline-deficient model has largely focused on gene expression rather than gene structure, especially sparse are studies regarding to alternative splicing (AS). In modern life science research, primary hepatocytes culture technology facilitates such studies, which can accurately imitate liver activity in vitro and show unique superiority. Whereas limitations to traditional hepatocytes culture technology exist in terms of efficiency and operability. This study pursued an optimization culture method for duck primary hepatocytes to explore AS in choline-deficient model. Methods: We performed an optimization culture method for duck primary hepatocytes with multi-step digestion procedure from Pekin duck embryos. Subsequently a NAFLD model was constructed with choline-free medium. RNA-seq and further analysis by rMATS were performed to identify AS events alterations in choline-deficency duck primary hepatocytes. Results: The results showed E13 (embryonic day 13) to E15 is suitable to obtain hepatocytes, and the viability reached over 95% by trypan blue exclusion assay. Primary hepatocyte retained their biological function as well identified by Periodic Acid-Schiff staining method and Glucose-6-phosphate dehydrogenase activity assay, respectively. Meanwhile, genes of alb and afp and specific protein of albumin were detected to verify cultured hepatocytes. Immunofluorescence was used to evaluate purity of hepatocytes, presenting up to 90%. On this base, choline-deficient model was constructed and displayed significantly increase of intracellular triglyceride and cholesterol as reported previously. Intriguingly, our data suggested that AS events in choline-deficient model were implicated in pivotal biological processes as an aberrant transcriptional regulator, of which 16 genes were involved in lipid metabolism and highly enriched in glycerophospholipid metabolism. Conclusion: An effective and rapid protocol for obtaining duck primary hepatocytes was established, by which our findings manifested choline deficiency could induce the accumulation of lipid and result in aberrant AS events in hepatocytes, providing a novel insight into various AS in the metabolism role of choline.