• Title/Summary/Keyword: nonaffine systems

Search Result 13, Processing Time 0.017 seconds

State- and Output-feedback Adaptive Controller for Pure-feedback Nonlinear Systems using Self-structuring Fuzzy System (완전 궤환 비선형 계통에 대한 자기 구조화 퍼지 시스템을 이용한 상태변수 및 출력 궤환 적응 제어기)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Jang, Young-Hak;Ryoo, Young-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1319-1329
    • /
    • 2012
  • Globally stabilizing adaptive fuzzy state- and output-feedback controllers for the fully nonaffine pure-feedback nonlinear system are proposed in this paper. By reformulating the original pure-feedback system to a standard normal form with respect to newly defined state variables, the proposed controllers require no backstepping design procedures. Avoiding backstepping makes the controller structure and stability analysis to be considerably simplified. For the global stabilty of the clossed-loop system, the self-structuring fuzzy system whose memebership functions and fuzzy rules are automatically generated and tuned is adopted. The proposed controllers employ only one fuzzy logic system to approximate unknown nonlinear function, which highlights the simplicity of the proposed adaptive fuzzy controller. Moreover, the output-feedback controller of the considered system proposed in this paper have not been dealt with in any literature yet.

Adaptive Output-feedback Neural Control of uncertain pure-feedback nonlinear systems (불확실한 pure-feedback 비선형 계통에 대한 출력 궤환 적응 신경망 제어기)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Jang, Young-Hak;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.494-499
    • /
    • 2013
  • Based on the state-feedback adaptive neuro-control algorithm for a SISO nonaffine pure-feedback nonlinear system proposed in [15], an output-feedback controller is proposed in this paper. The output-feedback adaptive neural-net controller for the considered nonlinear system has not been previously proposed in any other literatures yet. The proposed output-feedback controller inherits all the advantages of [15] such that it does not adopt backstepping and this results in relatively simple control and adapting laws. Only one neural network is required for the proposed adaptive controller. The proposed neural-net control scheme expands the applicable class of nonlinear systems.

Adaptive Neural Control of Nonlinear Pure-feedback Systems (완전궤환 비선형 계통에 대한 적응 신경망 제어기)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Chang, Young-Hak
    • Journal of IKEEE
    • /
    • v.14 no.3
    • /
    • pp.182-189
    • /
    • 2010
  • A new Adaptive neural state-feedback controller for the fully nonaffine pure-feedback nonlinear system are presented in this paper. By reformulating the original pure-feedback system to a standard normal form with respect to newly defined state variables, the proposed controller requires no backstepping design procedure. Avoiding backstepping makes the controller structure and stability analysis considerably simple. The proposed controller employs only one neural network to approximate unknown ideal controllers, which highlights the simplicity of the proposed neural controller. Simulation examples demonstrate the efficiency and performance of the proposed approach.