• Title/Summary/Keyword: non-welded

Search Result 203, Processing Time 0.027 seconds

A study on the fatigue characteristics of SM 490 A material due to the welding type (SM 490 A 재질에 대한 용접 유형에 따른 피로특성 연구)

  • Kim, Jae-Hoon;Goo, Byung-Choon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.274-278
    • /
    • 2004
  • This study investigates the fatigue characteristics of SM 490 A material specimens for the railway vehicle due to the welding type. The more stress ratio decreases, the more strength of fillet welded specimen decreases. At speciallly, when the stress ratio of TN(Plate with transverse fillet welded rib) specimens decreases 0.5, 0.1, and -0.1, the fatigue limit decreases unifomly. The strength of TN is higher than it of NCN in the compare of fillet welding type, but the strength of NCN(Non load-carrying cruciform fillet welded joint) is higher than it of CN(Load-carrying cruciform fillet welded joint), which these specimens have the rib in the both side. We analysis the strains on the weld positions of the TN specimens during the fatigue test for the investigation of crack initiation and crack growth. In the theses results, we could find the fatigue crack initiation point and time.

  • PDF

Prediction of the Fatigue Crack Growth from Strain Measurement on Spot Welded Nugget Zone (점 용접 너깃부에서의 변형률 측정에 의한 피로균열성장 예측)

  • 김덕중
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.140-145
    • /
    • 1997
  • In case of spot-welded joints, the fatigue cracks generally originate from the weld interfaces of the neighborhood nugget tips, and propagate toward the outer surfaces of the sheets. Generally, because fatigue crack was observed in nugget around, strain gage was attached at nugget zone. Accordingly, it was very difficult to detect the generation time of fatigue crack in spot-welded joints and to measure the propagation speed of fatigue crack. We developed the non-destructive method, according to which th fatigue crack propagation rate can be quantitatively estimated by utilizing information obtained from strain gages bonded on the electrode indentations of spot welds. The results measured by real crack were compared with the data which was measured by strain gauge method in fatigue testing. And so fatigue strength was evaluated by stress intensity factor. In this study behavior of fatigue crack propagation under repeated load were considered.

  • PDF

SOME POLYNOMIAL INVARIANTS OF WELDED LINKS

  • IM, YOUNG HO;LEE, KYEONGHUI;SHIN, MI HWA
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.929-944
    • /
    • 2015
  • We give a quotient of the ring ${\mathbb{Q}}[A^{{\pm}1},\;t^{{\pm}1]$ so that the Miyazawa polynomial is a non-trivial invariant of welded links. Furthermore we show that this is also an invariant under the other forbidden move $F_u$, and so it is a fused isotopy invariant. Also, we give some quotient ring so that the index polynomial can be an invariant for welded links.

A Corrosion Resistance Evaluation of Welded AISI 304 Stainless Steel by Electrochemical Methods. (전기화학적 방법에 의한 AISI 304 스테인리스강 용접부의 내식성 평가)

  • 백신영;김관휴
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.83-89
    • /
    • 1990
  • Electrochemical methods have been proposed as non-destructive, rapid and quantitative means for determining the degree of sensitization associated with Chromium depleted zones surrounding precipitates of Cr carbide and formation of secondary phase in stainless steel. In this study, the specimen of AISI 304 stainless steel and its welded sections, which welded by TIG, MIG, $CO_2$ and ARC, were tested corrosion resistance by electrochemical methods in 0.5N HCl and 1N $H_2SO_4$ with or without 0.01N KSCN. The results were confirmed that electrochemical methods could be used as a test method of corrosion resistance evaluation for the welded AISI 304 stainless steel.

  • PDF

Analysis on the Tube and Welded Blank Hydroforming of Automotive Engine Mount Bracket (자동차 엔진마운트 브래킷의 관재 및 용접판재 유압성형에 대한 성형해석)

  • 김헌영;신용승;홍춘기;전병희;오수익
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.3-14
    • /
    • 2001
  • Hydroforming is the technology using hydraulic pressure and forming sheet or tube metals to desired shape in a die cavity. lt can be characterized as tube hydroforming and sheet hydroforming depending on the shape of used blank. Due to its prcess-related benefits, this production technology has been remarkably noticed for great potential for feasible applications and recently gained great attraction from many industrials including automotive and non-automotive. This Paper analyzed the tube and the welded blank hydroforming process and compared formability of the processes for automotive engine mount bracket. The mathematical analysis was performed by using the dynamic explicit finite element code, PAM-STAMP. In tube hydroforming, bending, springback, and forming analysis were carried out and the effect of mandrel and axial feeding were examined. In welded blank hydroforming, pressure curve history is determined and the results of forming analysis were evaluated by the comparison of experimental results in the aspects of deformed shape and thickness distribution.

  • PDF

Fatigue Life Evaluation of Butt-Welded Tubular Joints

  • Kim, Dong-Su;Nho, In-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.34-39
    • /
    • 2003
  • Recent deepwater offshore structures in the Gulf of Mexico utilize butt welded tubular joints. Application of a welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical, as the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimation of the fatigue behavior of these tubular members in the design stage is generally condrcted by using S-N curves, as specified in the codeds and standards. Applying the stress concentration factor of the welded structure to the S-N approach often results in a very conservative assessment, because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fatigue life analysis using fracture mechanics has been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. Still, there is inconsistency when designing tubular joints using a conventional S-N approach and when specifying weld flaw acceptance criteria using fracture mechanics approach. This study developed fatigue curves that are consistent with both the S-N approach and the fracture mechanics approach. Accounting for non-uniform stress distribution and threshold stress intensity factor were key parameters in relating both approaches. A series of S-N curves, generated from the fracture mechanics approach, were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02 ). The new curves for tubular joint agree very well with the experimental results. The comparison also indicated the degree of conservatism built into the API X design curve.

Fatigue Life Evaluation of Butt-Welded Tubular Joints

  • Kim, Dong-Sup;Nho, In-Sik
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.69-74
    • /
    • 2003
  • Recent deepwater offshore structures in the Gulf of Mexico utilize butt welded tubular joints. Application of a welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical, as the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimation of the fatigue behavior of these tubular members in the design stage is generally conducted by using S-N curves, as specified in the codes and standards. Applying the stress concentration factor of the welded structure to the S-N approach often results in a very conservative assessment, because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fatigue life analysis using fracture mechanics has been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. Still, there is inconsistency when designing tubular joints using a conventional S-N approach and when specifying weld flaw acceptance criteria using fracture mechanics approach. This study developed fatigue curves that are consistent with both the S-N approach and the fracture mechanics approach. Accounting for non-uniform stress distribution and threshold stress intensity factor were key parameters in relating both approaches. A series of S-N curves, generated from the fracture mechanics approach, were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02). The new curves for tubular joint agree very well with the experimental results. The comparison also indicated the degree of conservatism built into the API X design curve.

  • PDF

Effect of Blast Cleaning on Fatigue Behavior of Non-load-carrying Fillet Welded Cruciform Joints (블라스트 표면처리가 하중비전달형 십자필렛 용접이음의 피로거동에 미치는 영향)

  • Kim, In Tae;Jung, Young Soo;Kim, Kwang Jin;Lee, Dong Uk
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.55-62
    • /
    • 2009
  • Blast cleaning has been applied in steel bridges for cleaning forged surface and increasing adhesive property of applied coating systems. Blasting is the operation of cleaning or preparing a surface by forcible propelling a stream of abrasive metals against it. Blast cleaning may improve surface geometry and induce compressive residual stress, and eventually may increase fatigue life of weld joints. In this paper, fatigue tests were carried out on three types of non-load-carrying fillet welded cruciform joints, as-welded joints, blast-treated joints, and stress-relieved joints after blasting, in order to investigate effect of blast cleaning on fatigue behavior of the weld joints. By Blast cleaning, the weld toe radius was increased by 29% and compressive residual stress was induced near weld toes. Blast cleaning increased fatigue life and fatigue endurance limit of the weld joints. When the applied stress ranges decreased, the increment in fatigue life became larger. About a 150% increase in fatigue limit could be realized by using blast cleaning.

A Study on Non-linear Behavior in Welded Structures by Mechanical Stress Release Method (기계적 응력 완화법에 의한 용접구조물의 비선형 거동에 관한 연구)

  • 김정현;장경복;윤훈성;강성수;조상명
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.66-71
    • /
    • 2003
  • The release of residual stress by mechanical loading and unloading is often performed in the fabrication of box structure fur steel bridge. The proper degree of loading and unloading is significant at release method of residual stress by mechanical loading because that degree is changed by material and geometric shape of welded structure. Therefore, the simulation model that could exactly analyze the release of residual stress by mechanical loading is to be necessary. In this study, the non-linear behavior of weldments under external loading and unloading, such as the decrease and increase of structure stiffness, was investigated by monitoring of nominal stress and strain. Tensile loading and unloading test and the proper degree of stress relaxation was measured by sectioning technique using strain gauge. Analysis model that is indispensable for the effective application of MSR method was established on the basis of test and measurement result.

The Strain Measurement of Pure Aluminum Welded Zone by the Laser System (레이저 계측에 의한 순알루미늄 용접부의 스트레인 측정)

  • 성백섭;차용훈;이연신
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.71-76
    • /
    • 2002
  • Currently knowledge of strain in welds has mainly been obtained from strain gage method; that is directly attaching the gage to the most of the material. The very flew non-contact methods are still in the early stage. One of the non-contact methods is by the use of the laser that has high-level of the accuracy for the measurement, and this laser also has excellent characteristics on which many studies for its applications are focused throughout the many fields. The paper is on the measurement of the strain caused by the characteristics and the temperature changes of the GTA welded zone employed with 3D ESPI system that is functionally modified through the laser ESPI system. This system may be applied the steel plate such as for the electronics, chemistry, flood instrument and electronic appliances.