• 제목/요약/키워드: non-uniform flow

검색결과 330건 처리시간 0.028초

유한요소법을 이용한 임의의 단면 딥드로잉 제품의 소재형상설계 (Blank Design for the General Shaped Deep Drawing Products by F.E.M)

  • 김상도;박민호;서대교
    • 소성∙가공
    • /
    • 제4권4호
    • /
    • pp.302-321
    • /
    • 1995
  • A method of determining an optimum blank shape for the non-circular deep drawing process is investigated. The rigid-plastic finite element method is introduced and the computer program code is developed. The ideal shape of a drawn cup with uniform wall height is assumed and metal flow is traced back-ward step by step to predict an initial blank shape of the ideal cup. For examples of the non-circular deep drawing products, three cases of drawn cup with quadrilateral punch shape are considered and optimum blank shapes for each case are proposed and compared with experimental results.

  • PDF

병렬도체에서 선재의 배열형상에 따른 비접촉식 전류분류 측정 (Current sharing measurement using non-contact method for parallel HTS tapes conductor according to tape array geometry)

  • 변상범;박명진;최석진;박상호;이승욱;김우석;이지광;최경달
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제10권1호
    • /
    • pp.32-36
    • /
    • 2008
  • An HTS conductor with parallel HTS tapes is essential for a large power HTS device to flow a large current. One of the most important factor for this conductor is a current distribution. Non-uniform current distribution in parallel tapes makes the critical current of the conductor low and the AC losses high. In this paper we proposed a non-contact method which measured each current in parallel tapes by using an array of Hall sensors. A matrix can be derived from this array for calibration. The current distributions of 4 and 6 parallel tapes were measured.

마이크로 가스 터빈용 연소기의 연료 노즐의 유량 분배에 관한 수치 해석적 연구 (Numerical Study on Flow Distribution of Fuel Nozzles for a Combustor in a Micro Gas Turbine)

  • 김태훈;도규형;한용식;김명배;최병일
    • 한국연소학회지
    • /
    • 제19권4호
    • /
    • pp.8-13
    • /
    • 2014
  • Flow distribution of fuel nozzles for a combustor in a micro gas turbine is numerically investigated. The fuel supply system for the present study has 12 single nozzles with a diameter of several hundred micrometers. A uniform temperature distribution of a combustor outlet should be achieved for maximizing the lives of the turbine blades and nozzle guide vanes. For this, it is very important to uniformly supply fuel to a combustor. In order to investigate flow distributions of fuel nozzles, numerical models for fuel nozzles are made and solved by a commercial code, ANSYS FLUENT. An effect of a fuel nozzle diameter and fuel flow rates on flow distribution of fuel nozzles is numerically investigated. As a result, non-uniformity is increasing as a diameter of a single fuel nozzle increases. Finally, an appropriate diameter of a single fuel nozzle is suggested.

A New Concept of Power Flow Analysis

  • Kim, Hyung-Chul;Samann, Nader;Shin, Dong-Geun;Ko, Byeong-Hun;Jang, Gil-Soo;Cha, Jun-Min
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권3호
    • /
    • pp.312-319
    • /
    • 2007
  • The solution of the power flow is one of the most important problems in electrical power systems. These traditional methods such as Gauss-Seidel method and Newton-Raphson (NR) method have had drawbacks up to now such as initial values, abnormal operating solutions and divergences in heavy loads. In order to overcome theses problems, the power flow solution incorporating genetic algorithm (GA) is introduced in this paper. General operator of genetic algorithm, arithmetic crossover, and non-uniform mutation operator of GA are suggested to solve the power flow problem. While abnormal solution cannot be obtained by a NR method, multiple power flow solution can be obtained by a GA method. With a heavy load, both normal solution and abnormal solution can be obtained by a proposed method. In this paper, a floating number representation instead of the binary number representation is introduced for accuracy. Simulation results have been compared with traditional methods.

Hybrid medium model for conjugate heat transfer modeling in the core of sodium-cooled fast reactor

  • Wang, X.A.;Zhang, Dalin;Wang, Mingjun;Song, Ping;Wang, Shibao;Liang, Yu;Zhang, Yapei;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.708-720
    • /
    • 2020
  • Core-wide temperature distribution in sodium-cooled fast reactor plays a key role in its decay heat removal process, however the prediction for temperature distribution is quite complex due to the conjugate heat transfer between the assembly flow and the inter-wrapper flow. Hybrid medium model has been proposed for conjugate heat transfer modeling in the core. The core is modeled with a Realistic modeled inter-wrapper flow and hybrid medium modeled assembly flow. To validate present model, simulations for a three-assembly model were performed with Realistic modeling, traditional porous medium model and hybrid medium model, respectively. The influences of Uniform/Non-Uniform power distribution among assemblies and the Peclet number within the assembly flow have been considered. Compared to traditional porous medium model, present model shows a better agreement with in Realistic modeling prediction of the temperature distribution and the radial heat transfer between the inter-wrapper flow and the assembly flow.

An Analytical Investigation on the Build-up of the Temperature Field due to a Point Heat Source in Shallow Coastal Water with Oscillatory Alongshore-flow

  • Jung, Kyung-Tae;Kim, Chong-Hak;Jang, Chan-Joo;Lee, Ho-Jin;Kang, Sok-Kuh;Yjm, Ki-Dai
    • Ocean and Polar Research
    • /
    • 제25권1호
    • /
    • pp.63-74
    • /
    • 2003
  • The build-up of the heat field in shallow coastal water due to a point source has been investigated using an analytical solution of a time-integral form derived by extending the solutions by Holley(1969) and also presented in Harleman (1971). The uniform water depth is assumed with non-isotropic turbulent dispersion. The alongshore-flow is assumed to be uni-directional, spatially uniform and oscillatory. Due to the presence of the oscillatory alongshore-flow, the heat build-up occurs in an oscillatory manner, and the excess temperature thereby fluctuates in that course and even in the quasi-steady state. A series of calculations reveal that proper choices of the decay coefficient as well as dispersion coefficients are critical to the reliable prediction of the excess temperature field. The dispersion coefficients determine the absolute values of the excess temperature and characterize the shoreline profile, particularly within the tidal excursion distance, while the decay coefficient determines the absolute value of the excess temperature and the convergence rate to that of the quasi-steady state. Within the e-folding time scale $1/k_d$ (where $k_d$ is the heat decay coefficient), heat build-up occurs more than 90% of the quasi-steady state values in a region within a tidal excursion distance (L), while occurs increasingly less the farther we go to the downstream direction (about 80% at 1.25L, and 70% at 1.5L). Calculations with onshore and offshore discharges indicate that thermal spreading in the direction of the shoreline is reduced as the shoreline constraint which controls the lateral mixing is reduced. The importance of collecting long-term records of in situ meteorological conditions and clarifying the definition of the heat loss coefficient is addressed. Interactive use of analytical and numerical modeling is recommended as a desirable way to obtain a reliable estimate of the far-field excess temperature along with extensive field measurements.

대용량 미분탄 보일러의 연소특성 및 NO 분포 특성 연구 (Studies on the Combustion Characteristics and NO Distribution in the Pulverized Coal Fired Boiler)

  • 박호영;김영주
    • 대한환경공학회지
    • /
    • 제30권5호
    • /
    • pp.552-559
    • /
    • 2008
  • 접선 연소식 미분탄 보일러의 연소특성 분석을 위한 3차원 전산해석 연구를 수행하였다. 해석 결과의 건전성 검증을 위하여 보일러 출구, 즉 절탄기 후단에서의 가스 온도, O$_2$, NO, CO 농도를 발전소의 실제 측정 결과와 비교하였다. 실제 발전소의 운전조건을 기준으로 보일러내의 가스온도, 속도 분포를 해석하였으며 주요 가스농도인 O$_2$, CO, CO$_2$, NO의 분포와 char 입자 궤적을 구하였다. 본 연구를 통하여 최종과열기 전단에서의 가스 온도가 불균일하게 분포함을 알 수 있었으며, 이는 보일러 상부 연소로에서의 잔류 선회유동의 결과인 것으로 파악되었다. 불균일한 가스온도 분포에 대한 해석결과는 접선연소식 미분탄 보일러에서 자주 발생하는 튜브 파손을 방지하는데 있어 유용한 자료로 활용될 수 있을 것이다.

유체-구조 연성해석을 이용한 원심압축기 운전익단간극과 성능 예측 (Study on the Performance of a Centrifugal Compressor Using Fluid-Structure Interaction Method)

  • 이호림;김창희;양장식;손창민;황윤제;정진희
    • 대한기계학회논문집B
    • /
    • 제40권6호
    • /
    • pp.357-363
    • /
    • 2016
  • 본 연구에서는 날개 두께 분포가 다른 두 임펠러를 이용하여 유체-구조 연성해석을 통해 운전익단간극을 예측하고 임펠러의 변형이 성능에 미치는 영향에 대해 연구하였다. 임펠러는 작동조건에서 작용하는 원심력, 압력, 열 하중의 영향으로 변형이 발생하게 된다. 이로 인해 초기 설계된 익단간극이 비균일하게 변화하는 것을 확인하였다. 특히 임펠러 날개의 선단과 후단에서 가장 큰 익단간극 감소가 발생하였으며, 이로인해 간극누설유동이 19.4% 감소하였다. 또한 운전조건에서 익단간극 감소로 간극누설 유량이 감소하면서 효율은 0.72% 증가하는 것을 확인하였다. 원심압축기 작동조건에서의 정확한 운전익단간극의 예측과 익단간극의 변화가 성능에 미치는 영향에 대해서 확인하였다.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part I: Flow and turbulence fields

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • 제6권1호
    • /
    • pp.23-60
    • /
    • 2016
  • The major objective of this study was to develop further understanding of 3D nearshore hydrodynamics under a variety of wave and tidal forcing conditions. The main tool used was a comprehensive 3D numerical model - combining the flow module of Delft3D with the WAVE solver of XBeach - of nearshore hydro- and morphodynamics that can simulate flow, sediment transport, and morphological evolution. Surf-swash zone hydrodynamics were modeled using the 3D Navier-Stokes equations, combined with various turbulence models (${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES). Sediment transport and resulting foreshore profile changes were approximated using different sediment transport relations that consider both bed- and suspended-load transport of non-cohesive sediments. The numerical set-up was tested against field data, with good agreement found. Different numerical experiments under a range of bed characteristics and incident wave and tidal conditions were run to test the model's capability to reproduce 3D flow, wave propagation, sediment transport and morphodynamics in the nearshore at the field scale. The results were interpreted according to existing understanding of surf and swash zone processes. Our numerical experiments confirm that the angle between the crest line of the approaching wave and the shoreline defines the direction and strength of the longshore current, while the longshore current velocity varies across the nearshore zone. The model simulates the undertow, hydraulic cell and rip-current patterns generated by radiation stresses and longshore variability in wave heights. Numerical results show that a non-uniform seabed is crucial for generation of rip currents in the nearshore (when bed slope is uniform, rips are not generated). Increasing the wave height increases the peaks of eddy viscosity and TKE (turbulent kinetic energy), while increasing the tidal amplitude reduces these peaks. Wave and tide interaction has most striking effects on the foreshore profile with the formation of the intertidal bar. High values of eddy viscosity, TKE and wave set-up are spread offshore for coarser grain sizes. Beach profile steepness modifies the nearshore circulation pattern, significantly enhancing the vertical component of the flow. The local recirculation within the longshore current in the inshore region causes a transient offshore shift and strengthening of the longshore current. Overall, the analysis shows that, with reasonable hypotheses, it is possible to simulate the nearshore hydrodynamics subjected to oceanic forcing, consistent with existing understanding of this area. Part II of this work presents 3D nearshore morphodynamics induced by the tides and waves.

Predictions of non-uniform tip clearance effects on the flow field in an axial compressor

  • Kang, Young-Seok;Kang, Shin-Hyoung
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.743-750
    • /
    • 2008
  • Asymmetric tip clearance in an axial compressor induces pressure and velocity redistributions along the circumferential direction in an axial compressor. This paper presents the mechanism of the flow redistribution due to the asymmetric tip clearance with a simple numerical modeling. The flow field of a rotor of an axial compressor is predicted when an asymmetric tip clearance occurs along the circumferential direction. The modeling results are supported by CFD results not only to validate the present modeling but also to investigate more detailed flow fields. Asymmetric tip clearance makes local flow area and resultant axial velocity vary along the circumferential direction. This flow redistribution 'seed' results in a different flow patterns according to the flow coefficient. Flow field redistribution patterns are largely dependent on the local tip clearance performance at low flow coefficients. However, the contribution of the main flow region becomes dominant while the tip clearance effect becomes weak as the flow coefficient increases. The flow field redistribution pattern becomes noticeably strong if a blockage effect is involved when the flow coefficient increases. The relative flow angle at the small clearance region decreases which result in a negative incidence angle at the high flow coefficient. It causes a recirculation region at the blade pressure surface which results in the flow blockage. It promotes the strength of the flow field redistribution at the rotor outlet. These flow pattern changes have an effect on the blade loading perturbations. The integration of blade loading perturbation from control volume analysis of the circumferential momentum leads to well-known Alford's force. Alford's force is always negative when the flow blockage effects are excluded. However when the flow blockage effect is incorporated into the modeling, main flow effects on the flow redistribution is also reflected on the Alford's force at the high flow coefficient. Alford's force steeply increases as the flow coefficient increases, because of the tip leakage suppression and strong flow redistribution. The predicted results are well agreed to CFD results by Kang and Kang(2006).

  • PDF