• Title/Summary/Keyword: non-uniform buckling

Search Result 82, Processing Time 0.026 seconds

Dynamics of disconnected risers under rigid and compliant hang-off (강성 및 컴플라이언트 행오프 하에서의 미연결송유관의 동력학)

  • Yoon, D. Y.
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.39-51
    • /
    • 1987
  • 석유시추 보호관의 비선형 운동을 시뮬레이트하는 유효한 해법이 non-uniform grid 유한차분법과 implicit time 적분법에 근거하여 제시되었다. 극한 상태에 있는 지지 플랫폼의 상승 가속도에 의해 생기는 보호관의 동적 좌굴형 반응에 관하여 상세히 연구되었고, 이 반응에 미치는 중요 변수가 규명되었다. 운동의 현저한 감소와 이에 따른 응력들이 컴플라이언트 행오프(hang-off)를 적용시킴으로써 얻어졌다.

  • PDF

Vibration and Buckling of the Rectangular Plate Loaded by Varying In-plane Stress (변분포 평면응력을 받는 직사각형 판의 진동과 좌굴 해석)

  • 신영재;윤종학;황기섭;지영철;로엘
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.651-656
    • /
    • 2004
  • This paper presents the application of Differential Transformation to the bucking load and the vibration problem of the rectangular plate loaded by varying in-plane stress. Numerical calculations are carried out and compared with previously published results to validate the results of the resent method. The results obtained by this method agree well with those reported in the Devious works. The results obtained by the present method are presented for various non-uniform loads.

  • PDF

Simplified finite element modelling of non uniform tall building structures comprising wall and frame assemblies including P-Δ effects

  • Belhadj, Abdesselem Hichem;Meftah, Sid Ahmed
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.253-273
    • /
    • 2015
  • The current investigation has been conducted to examine the effect of gravity loads on the seismic responses of the doubly asymmetric, three-dimensional structures comprising walls and frames. The proposed model includes the P-${\Delta}$ effects induced by the building weight. Based on the variational approach, a 3D finite element with two nodes and six DOF per node including P-${\Delta}$ effects is formulated. Dynamic and static governing equations are derived for dynamic and buckling analyzes of buildings braced by wall-frame systems. The influences of P-${\Delta}$ effects and height of the building on tip displacements under Hachinohe earthquake record are investigated through many structural examples.

Intelligent simulation of the thermal buckling characteristics of a tapered functionally graded porosity-dependent rectangular small-scale beam

  • Shan, Xiaomin;Huang, Anzhong
    • Advances in nano research
    • /
    • v.12 no.3
    • /
    • pp.281-290
    • /
    • 2022
  • In the current research, the thermal buckling characteristics of the bi-directional functionally graded nano-scale tapered beam on the basis of a couple of nonlocal Eringen and classical beam theories are scrutinized. The nonlocal governing equation and associated nonlocal boundary conditions are constructed using the conservation energy principle, and the resulting equations are solved using the generalized differential quadrature method (GDQM). The mechanical characteristics of the produced material are altered along both the beam length and thickness direction, indicating that it is a two-dimensional functionally graded material (2D-FGM). It is thought that the nanostructures are defective because to the presence of porosity voids. Finally, the obtained results are used to design small-scale sensors and make an excellent panorama of developing the production of nanostructures.

Sport injury diagnosis of players and equipment via the mathematical simulation on the NEMS sensors

  • Zishan Wen;Hanhua Zhong
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.201-215
    • /
    • 2024
  • The present research study emphasizes the utilization of mathematical simulation on a nanoelectromechanical systems (NEMS) sensor to facilitate the detection of injuries in players and equipment. Specifically, an investigation is conducted on the thermal buckling behavior of a small-scale truncated conical, cylindrical beam, which is fabricated using porous functionally graded (FG) material. The beam exhibits non-uniform characteristics in terms of porosity, thickness, and material distribution along both radial and axial directions. To assess the thermal buckling performance under various environmental heat conditions, classical and first-order nonlocal beam theories are employed. The governing equations for thermal stability are derived through the application of the energy technique and subsequently numerically solved using the extended differential quadratic technique (GDQM). The obtained results are comprehensively analyzed, taking into account the diverse range of effective parameters employed in this meticulous study.

Derivation of Exact Dynamic Stiffness Matrix for Non-Symmetric Thin-walled Straight Beams (비대칭 박벽보에 대한 엄밀한 동적 강도행렬의 유도)

  • 김문영;윤희택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.369-376
    • /
    • 2000
  • For the general loading condition and boundary condition, it is very difficult to obtain closed-form solutions for buckling loads and natural frequencies of thin-walled structures because its behaviour is very complex due to the coupling effect of bending and torsional behaviour. Consequently most of previous finite element formulations introduced approximate displacement fields using shape functions as Hermitian polynomials, isoparametric interpoation function, and so on. The purpose of this study is to calculate the exact displacement field of a thin-walled straight beam element with the non-symmetric cross section and present a consistent derivation of the exact dynamic stiffness matrix. An exact dynamic element stiffness matrix is established from Vlasov's coupled differential equations for a uniform beam element of non-symmetric thin-walled cross section. This numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. The natural frequencies are evaluated for the non-symmetric thin-walled straight beam structure, and the results are compared with available solutions in order to verify validity and accuracy of the proposed procedures.

  • PDF

Symbolic computation and differential quadrature method - A boon to engineering analysis

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.713-739
    • /
    • 2007
  • Nowadays computers can perform symbolic computations in addition to mere number crunching operations for which they were originally designed. Symbolic computation opens up exciting possibilities in Structural Mechanics and engineering. Classical areas have been increasingly neglected due to the advent of computers as well as general purpose finite element software. But now, classical analysis has reemerged as an attractive computer option due to the capabilities of symbolic computation. The repetitive cycles of simultaneous - equation sets required by the finite element technique can be eliminated by solving a single set in symbolic form, thus generating a truly closed-form solution. This consequently saves in data preparation, storage and execution time. The power of Symbolic computation is demonstrated by six examples by applying symbolic computation 1) to solve coupled shear wall 2) to generate beam element matrices 3) to find the natural frequency of a shear frame using transfer matrix method 4) to find the stresses of a plate subjected to in-plane loading using Levy's approach 5) to draw the influence surface for deflection of an isotropic plate simply supported on all sides 6) to get dynamic equilibrium equations from Lagrange equation. This paper also presents yet another computationally efficient and accurate numerical method which is based on the concept of derivative of a function expressed as a weighted linear sum of the function values at all the mesh points. Again this method is applied to solve the problems of 1) coupled shear wall 2) lateral buckling of thin-walled beams due to moment gradient 3) buckling of a column and 4) static and buckling analysis of circular plates of uniform or non-uniform thickness. The numerical results obtained are compared with those available in existing literature in order to verify their accuracy.

Thermal stability of functionally graded sandwich plates using a simple shear deformation theory

  • Bouderba, Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.397-422
    • /
    • 2016
  • In the present work, a simple first-order shear deformation theory is developed and validated for a variety of numerical examples of the thermal buckling response of functionally graded sandwich plates with various boundary conditions. Contrary to the conventional first-order shear deformation theory, the present first-order shear deformation theory involves only four unknowns and has strong similarities with the classical plate theory in many aspects such as governing equations of motion, and stress resultant expressions. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are considered as uniform, linear and non-linear temperature rises within the thickness direction. The results reveal that the volume fraction index, loading type and functionally graded layers thickness have significant influence on the thermal buckling of functionally graded sandwich plates. Moreover, numerical results prove that the present simple first-order shear deformation theory can achieve the same accuracy of the existing conventional first-order shear deformation theory which has more number of unknowns.

Investigation on thermal buckling of porous FG plate resting on elastic foundation via quasi 3D solution

  • Mekerbi, Mohamed;Benyoucef, Samir;Mahmoudi, Abdelkader;Bourada, Fouad;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.513-524
    • /
    • 2019
  • The present article deals with thermal buckling of functionally graded plates with porosity and resting on elastic foundation. The basic formulation is based on quasi 3D theory. The present theory contains only four unknowns and also accommodates the thickness stretching effect. Porosity-dependent material coefficients of the plate are compositionally graded throughout the thickness according to a modified micromechanical model. Different patterns of porosity distributions are considered. The thermal loads are assumed to be uniform, linear and non-linear temperature rises through the thickness direction. The plate is assumed to be simply supported on all edges. Various numerical examples are given to check the accuracy and reliability of the present solution, in which both the present results and those reported in the literature are provided. In addition, several numerous new results for thick FG plates with porosity are also presented.

Flexural Strength of HSB Steel Girders Due to Inelastic Lateral-Torsional Buckling - Sections with Slender Web (HSB 강거더의 비탄성 횡비틂좌굴에 의한 휨강도 - 세장 복부판 단면)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.217-231
    • /
    • 2012
  • The flexural behavior of HSB I-girder with a non-slender web attributed to inelastic lateral-torsional buckling under uniform bending was investigated using nonlinear finite element analysis of ABAQUS. The girder was assumed to have a compact or noncompact web in order to prevent premature bend-buckling of the web. The unbraced length of the girder was selected so that inelastic lateral-torsional buckling governs the ultimate flexural strength. The compression flange was also assumed to be either compact or noncompact to prevent local buckling of the elastic flange. Both homogeneous sections fabricated from HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. In the FE analysis, the flanges and web of I-girder were modeled as thin shell elements. Initial imperfections and residual stresses were imposed on the FE model. An elasto-plastic strain hardening material was assumed for steel. After establishing the validity of the present FE analysis by comparing FE results with test results in existing literature, the effects of initial imperfection and residual stress on the inelastic lateral-torsional buckling behavior were analyzed. Finite element analysis results for 96 sections demonstrated that the current inelastic strength equations for the compression flange in AASHTO LTFD can be applied to predict the inelastic lateral torsional buckling strength of homogeneous and hybrid HSB I-girders with a non-slender web.