• Title/Summary/Keyword: non-uniform beam

Search Result 136, Processing Time 0.023 seconds

원자층증착법을 이용한 Y2O3 박막 형성 및 저항 스위칭 특성

  • Jeong, Yong-Chan;Seong, Se-Jong;Lee, Myeong-Wan;Park, In-Seong;An, Jin-Ho;Rao, Venkateswara P.;Dussarrat, Christian;Noh, Wontae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.229.2-229.2
    • /
    • 2013
  • Yttrium oxide (Y2O3)는 band gap이 5.5 eV 정도로 상대적으로 넓고, 굴절상수가 1.8, 유전율이 10~15, Silicon 과의 격자 불일치가 작은 특성을 가지고 있다. 또한 녹는점이 높아 열적으로 안정하기 때문에 전자소자 및 광학소자에 다양하게 응용되는 물질이다. Y2O3 박막은 다양한 방법으로 증착할 수 있는데, 그 방법에는 e-beam evaporation, laser ablation, sputtering, thermal oxidation, metal-organic chemical vapor deposition, and atomic layer deposition (ALD) 등이 있다. ALD는 기판 표면에 흡착된 원자들의 자기 제한적 반응에 의하여 박막이 증착되기 때문에 박막 두께조절이 용이하고 step coverage와 uniformity 측면에서 큰 장점이 있다. 이전에는 Y(thd)3 and Y(CH3Cp)3 와 같은 금속 전구체를 이용하여 ALD를 진행하여, 증착 속도가 낮고 defect이 많아 non-stoichiometric한 조성의 박막이 증착되는 문제점이 있었다. 이번 연구에서는, (iPrCp)2Y(iPr-amd)와 탈이온수를 사용하여 Y2O3 박막을 증착하였다. Y2O3 박막 증착에 사용한 Y 전구체는 상온에서 액체이고 $192^{\circ}C$ 에서 1 Torr의 높은 증기압을 갖는다. Y2O3 박막 증착을 위하여 Y 전구체는 $150^{\circ}C$ 로 가열하여 N2 gas를 이용하여 bubbling 방식으로 공정 챔버 내로 공급하였다. Y2O3 박막의 ALD window는 $250{\sim}350^{\circ}C$ 였으며, Y 전구체의 공급시간이 5초에 다다르자 더 이상 증착 두께가 증가하지 않는 자기 제한적 반응을 확인할 수 있었다. 그리고 증착된 Y2O3 박막의 특성 분석을 위해 Atomic force microscopy (AFM)과 X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) 를 진행하였다. 박막의 Surface morphology 는 매끄럽고 uniform 하였으며, 특히 고체 금속 전구체를 사용했을 때와 비교하여 수산화물이 거의 없는 박막을 얻을 수 있었다. 그리고 조성 분석을 통해 증착된 Y2O3 박막이 stoichiometric하다는 것을 알수 있었다. 또한 metal-insulator-metal (MIM) 구조 (Ru/Y2O3/Ru) 의 resistor 소자를 형성하여 저항 스위칭 특성을 확인하였다.

  • PDF

Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load

  • Esen, Ismail;Alazwari, Mashhour A.;Eltaher, Mohamed A;Abdelrahman, Alaa A.
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.805-826
    • /
    • 2022
  • The free and live load-forced vibration behaviour of porous functionally graded (PFG) higher order nanobeams in the thermal and magnetic fields is investigated comprehensively through this work in the framework of nonlocal strain gradient theory (NLSGT). The porosity effects on the dynamic behaviour of FG nanobeams is investigated using four different porosity distribution models. These models are exploited; uniform, symmetrical, condensed upward, and condensed downward distributions. The material characteristics gradation in the thickness direction is estimated using the power-law. The magnetic field effect is incorporated using Maxwell's equations. The third order shear deformation beam theory is adopted to incorporate the shear deformation effect. The Hamilton principle is adopted to derive the coupled thermomagnetic dynamic equations of motion of the whole system and the associated boundary conditions. Navier method is used to derive the analytical solution of the governing equations. The developed methodology is verified and compared with the available results in the literature and good agreement is observed. Parametric studies are conducted to show effects of porosity parameter; porosity distribution, temperature rise, magnetic field intensity, material gradation index, non-classical parameters, and the applied moving load velocity on the vibration behavior of nanobeams. It has been showed that all the analyzed conditions have significant effects on the dynamic behavior of the nanobeams. Additionally, it has been observed that the negative effects of moving load, porosity and thermal load on the nanobeam dynamics can be reduced by the effect of the force induced from the directed magnetic field or can be kept within certain desired design limits by controlling the intensity of the magnetic field.

Modeling of rock dilation and spalling in an underground opening at depth (대심도 지하공동에 발생하는 암반의 팽창 및 스폴링 현상 모델링)

  • Cho, Nam-Kak;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.31-41
    • /
    • 2010
  • This paper presents both numerical and physical modeling approaches for the dilation and spalling of rock recognized as typical process of rock around an underground opening at depth. For physical approach, laboratory testing of rectangular beams using a synthetic rock was used to investigate the onset of dilation and spalling. The beams are axially compressed and subjected to 4-point bending to provide non-uniform compressive stresses which are similar to the maximum tangential stress distribution around circular openings. Discrete element numerical analyses using commercial code $PFC^{2D}$ (Particle Flow Code) were performed to evaluate the stress path at various locations in the beams. The findings from these approaches suggest that the onset of dilation in laboratory tests appears to be a good indicator for assessing the stress magnitudes required to initiate spalling.

An Experimental Study on the Evaluation of Residual Tensile Load-carrying Capacity of Corroded Steel Plates of Temporary Structure (가시설 부식 강재의 잔존 인장 내하성능 평가에 관한 실험적 연구)

  • Kim, In-Tae;Chang, Hong-Ju;Cheung, Ji-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.399-409
    • /
    • 2010
  • Steel structures are threatened to reduce load-carrying capacity as the cross section is decreased by corrosion. However, there has been no method in definitely evaluating residual load-carrying capacity and the effect of corrosion to the load-carrying capacity of steel. This study evaluated tensile residual load-carrying capacity of corroded steel plates by using tensile tests of specimens, which were selected from the web of temporary structure's main beam. After the surface shapes were measured and tensile tests were examined, the rust of 21 corroded specimens was, first of all, removed using a chemical method. From the tensile test result, which of reference specimens that was picked off at the flange of the same main 13-mm-thick beam and corroded specimens were based, surface geometry and correlation with the reduction of corroded thickness and strain, yield strength or tensile strength was established as constant numbers. Effective thickness of corroded steel with irregular cross sections could be calculated using average residual thickness and standard deviation. The irregular cross sections could be the evaluated tensile strength that is equalized to non-corroded uniform steel's regardless of corrosion. Also, reasonable measuring intervals of residual thickness could be proposed by using this result to apply for executive work.

INTERGRANULAR CORROSION-RESISTANT STAINLESS STEEL BY GRAIN BOUNDARY ENGINEERING

  • Hiroyuki Kokawa;Masayuki Shimada;Wang, Zhan-Jie;Yutaka S. Sato
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.250-254
    • /
    • 2002
  • Intergranular corrosion of austenitic stainless steels is a conventional and momentous problem during welding and high temperature use. One of the major reasons for such intergranular corrosion is so-called sensitization, i.e., chromium depletion due to chromium carbide precipitation at grain boundaries. Conventional methods for preventing sensitization of austenitic stainless steels include reduction of carbon content in the material, stabilization of carbon atoms as non-chromium carbides by the addition of titanium, niobium or zirconium, local solution-heat-treatment by laser beam, etc. These methods, however, are not without drawbacks. Recent grain boundary structure studies have demonstrated that grain boundary phenomena strongly depend on the crystallographic nature and atomic structure of the grain boundary, and that grain boundaries with coincidence site lattices are immune to intergranular corrosion. The concept of "grain boundary design and control", which involves a desirable grain boundary character distribution, has been developed as grain boundary engineering. The feasibility of grain boundary engineering has been demonstrated mainly by thermomechanical treatments. In the present study, a thermomechanical treatment was tried to improve the resistance to the sensitization by grain boundary engineering. A type 304 austenitic stainless steel was pre-strained and heat-treated, and then sensitized, varying the parameters (pre-strain, temperature, time, etc.) during the thermomechanical treatment. The grain boundary character distribution was examined by orientation imaging microscopy. The intergranular corrosion resistance was evaluated by electrochemical potentiokinetic reactivation and ferric sulfate-sulfuric acid tests. The sensitivity to intergranular corrosion was reduced by the thermomechanical treatment and indicated a minimum at a small roll-reduction. The frequency of coincidence-site-lattice boundaries indicated a maximum at a small strain. The ferric sulfate-sulfuric acid test showed much smaller corrosion rate in the thermomechanically-treated specimen than in the base material. An excellent intergranular corrosion resistance was obtained by a small strain annealing at a relatively low temperature for long time. The optimum parameters created a uniform distribution of a high frequency of coincidence site lattice boundaries in the specimen where corrosive random boundaries were isolated. The results suggest that the thermomechanical treatment can introduce low energy segments in the grain boundary network by annealing twins and can arrest the percolation of intergranular corrosion from the surface.

  • PDF

Laser crystallization in active-matrix display backplane manufacturing

  • Turk, Brandon A.;Herbst, Ludolf;Simon, Frank;Fechner, Burkhard;Paetzel, Rainer
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1261-1262
    • /
    • 2008
  • Laser-based crystallization techniques are ideally-suited for forming high-quality crystalline Si films on active-matrix display backplanes, because the highly-localized energy deposition allows for transformation of the as-deposited a-Si without damaging high-temperature-intolerant glass and plastic substrates. However, certain significant and non-trivial attributes must be satisfied for a particular method and implementation to be considered manufacturing-worthy. The crystallization process step must yield a Si microstructure that permits fabrication of thin-film transistors with sufficient uniformity and performance for the intended application and, the realization and implementation of the method must meet specific requirements of viability, robustness and economy in order to be accepted in mass production environments. In recent years, Low Temperature Polycrystalline Silicon (LTPS) has demonstrated its advantages through successful implementation in the application spaces that include highly-integrated active-matrix liquid-crystal displays (AMLCDs), cost competitive AMLCDs, and most recently, active-matrix organic light-emitting diode displays (AMOLEDs). In the mobile display market segment, LTPS continues to gain market share, as consumers demand mobile devices with higher display performance, longer battery life and reduced form factor. LTPS-based mobile displays have clearly demonstrated significant advantages in this regard. While the benefits of LTPS for mobile phones are well recognized, other mobile electronic applications such as portable multimedia players, tablet computers, ultra-mobile personal computers and notebook computers also stand to benefit from the performance and potential cost advantages offered by LTPS. Recently, significant efforts have been made to enable robust and cost-effective LTPS backplane manufacturing for AMOLED displays. The majority of the technical focus has been placed on ensuring the formation of extremely uniform poly-Si films. Although current commercially available AMOLED displays are aimed primarily at mobile applications, it is expected that continued development of the technology will soon lead to larger display sizes. Since LTPS backplanes are essentially required for AMOLED displays, LTPS manufacturing technology must be ready to scale the high degree of uniformity beyond the small and medium displays sizes. It is imperative for the manufacturers of LTPS crystallization equipment to ensure that the widespread adoption of the technology is not hindered by limitations of performance, uniformity or display size. In our presentation, we plan to present the state of the art in light sources and beam delivery systems used in high-volume manufacturing laser crystallization equipment. We will show that excimer-laser-based crystallization technologies are currently meeting the stringent requirements of AMOLED display fabrication, and are well positioned to meet the future demands for manufacturing these displays as well.

  • PDF