• Title/Summary/Keyword: non-traditional structures

Search Result 107, Processing Time 0.023 seconds

On Neural Network Adaptive Equalizers for Digital Communication

  • Hongrui Jiang;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.10A
    • /
    • pp.1639-1644
    • /
    • 2001
  • Two decision feedback equalizer structures employing recurrent neural network (RNN) used for non-linear channels with severe intersymbol interference (ISI) and non-linear distortion are proposed in this paper, which skillfully put the traditional decision feedback structure for linear channels equalization into RNN, replace decision feedback signal with training signal in the learning process and adaptively adjust the learning step. Simulative results of the first type of two new equalizer structures have shown that it has better equalization performances than traditional recurrent neural network equalizer (RNNE) under the same condition.

  • PDF

Operational modal analysis of structures by stochastic subspace identification with a delay index

  • Li, Dan;Ren, Wei-Xin;Hu, Yi-Ding;Yang, Dong
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.187-207
    • /
    • 2016
  • Practical ambient excitations of engineering structures usually do not comply with the stationary-white-noise assumption in traditional operational modal analysis methods due to heavy traffic, wind guests, and other disturbances. In order to eliminate spurious modes induced by non-white noise inputs, the improved stochastic subspace identification based on a delay index is proposed in this paper for a representative kind of stationary non-white noise ambient excitations, which have nonzero autocorrelation values near the vertical axis. It relaxes the stationary-white-noise assumption of inputs by avoiding corresponding unqualified elements in the Hankel matrix. Details of the improved stochastic subspace identification algorithms and determination of the delay index are discussed. Numerical simulations on a four-story frame and laboratory vibration experiments on a simply supported beam have demonstrated the accuracy and reliability of the proposed method in eliminating spurious modes under non-white noise ambient excitations.

The Examination of the Palace Byeoljeon, the King's non-ceremonial space, during Japanese Occupation Period to look into inner palace construction of Changdeokgung Palace (창덕궁 내전 일곽 공사로 보는 일제강점기 궁궐 별전)

  • Kim, Ji-Hyun
    • Journal of architectural history
    • /
    • v.29 no.2
    • /
    • pp.63-74
    • /
    • 2020
  • The palace byeoljeon(別殿), the King's non-ceremonial space, were created as a space for the king to comfortably use and for the king to do what he wanted to do. The byeoljeon housed various types of spaces and were flexible in that they could be repurposed to meet the demands of the times. Nevertheless, their characteristic as palatial building created for the King's convenience has remained unchanged. In this study, we examine the process by which such royal spaces were created by focusing on the reconstruction of the Changdeokgung Huijeongdang during Japanese occupation period, with a view to continuity and the transformation process. The reconstruction of Huijeongdang at the time may be considered along internal and external characteristics. Internally, Huijeongdang connected the symbolism of the king's space as the palace byeoljeon. Externally, Huijeongdang is characterized by its mixture of traditional and western style, where western style structures were housed within traditional buildings. The plans for the block of Huijeongdang also included the coexistence of traditional building, western style building, and mixture of traditional and western style building. This reflects the characteristic continuity of the byeoljeon as well as the architectural techniques of the time, manifested together within a specific spatial block.

Efficient buffeting analysis under non-stationary winds and application to a mountain bridge

  • Su, Yanwen;Huang, Guoqing;Liu, Ruili;Zeng, Yongping
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.89-104
    • /
    • 2021
  • Non-synoptic winds generated by tornadoes, downbursts or gust fronts exhibit significant non-stationarity and can cause significant wind load effect on flexible structures such as long-span bridges. However, conventional assumptions on stationarity used to evaluate the structural wind-induced vibration are inadequate. In this paper, an efficient frequency domain scheme based on fast CQC method, which can predict non-stationary buffeting random responses of long-span bridges, is presented, and then this approach is applied to evaluate the buffeting response of a long-span suspension bridge located in a complex mountainous wind environment as an example. In this study, the data-driven method based on one available measured wind speed sample is firstly presented to establish non-stationary wind models, including time-varying mean wind speed, time-varying intensity envelope function and uniformly modulated fluctuating spectrum. Then, a linear time-variant (LTV) system based on the proposed scheme can be generally applied to calculate the non-stationary buffeting responses. The effectiveness and accuracy of the proposed scheme are verified through Monte Carlo time domain simulation implemented in ANSYS platform. Also, the transient effect nature of the bridge responses is further illustrated by comparison of the non-stationary, quasistationary and steady-state cases. Finally, buffeting response analysis with traditional stationary treatment (10 min constant mean plus stationary wind fluctuation) is performed to illustrate the importance of the non-stationary characteristics embedded in original wind speed samples.

Equivalent modal damping ratios for non-classically damped hybrid steel concrete buildings with transitional storey

  • Sivandi-Pour, Abbas;Gerami, Mohsen;Khodayarnezhad, Daryush
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.383-401
    • /
    • 2014
  • Over the past years, hybrid building systems, consisting of reinforced concrete frames in bottom and steel frames in top are used as a cost-effective alternative to traditional structural steel or reinforced concrete constructions. Dynamic analysis of hybrid structures is usually a complex procedure due to various dynamic characteristics of each part, i.e. stiffness, mass and especially damping. In hybrid structures, one or more transitional stories with composite sections are used for better transition of lateral and gravity forces. The effect of transitional storey has been considered in no one of the studies in the field of hybrid structures damping. In this study, a method has been proposed to determining the equivalent modal damping ratios for hybrid steel-concrete buildings with transitional storey. In the proposed method, hybrid buildings are considered to have three structural systems, reinforced concrete, composite steel and concrete (transitional storey) and steel system. In this method, hybrid buildings are substituted appropriately with 3-DOF system.

Computer Analysis of Non-vaulted Nef Unique System

  • Hong, Seong-Woo
    • Architectural research
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • Ever since Viollet-le-Due began to examine Gothic structural elements using his method of geometrical analysis in the nineteenth century, art and architectural historians and a few engineers have periodically attempted to ascertain the structural advantages of the various characteristic features of Gothic architecture. In none of these studies, however, has the way forces work within the lightweight and spacious masonry Gothic buildings been precisely interpreted. The approach taken by art and architectural historians has therefore tended to be primarily descriptive and to be based on intuitive assumptions. This study intend to analyze the Gothic non-vaulted nef unique(aisleless) structures of Lower Languedoc which has never been scientifically tested, and to provide as comprehensive an explanation as possible of the way in which these non-vaulted buildings work. In order to achieve this goal, this paper Is to examine, by means of finite element analysis. the links between the width of non-vaulted aisleless structures, the configuration of the arches, diaphragm arch, and the buttress. Finite element analysis with a computer provides a more accurate analysis than the methods of analysis that have been heretofore applied to Gothic structures, as well as permits us to visualize the global stress behavior of the structure. Combined with traditional methods of studying historical buildings, therefore, finite element analysis inevitably give us a broader understanding of the processes involved in the design and construction of medieval buildings.

  • PDF

Dynamic Interrelationship between the Evolution of Structural Systems and Façade Design in Tall Buildings: From the Home Insurance Building in Chicago to the Present

  • Moon, Kyoung Sun
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • The emergence of tall buildings in the late $19^{th}$ century was possible by using new materials and separating the role of structures and that of non-structural walls from the traditional load-bearing walls that acted as both. The role of structures is more important in tall buildings than in any other building type due to the "premium for height". Among the walls freed from their structural roles, façades are of conspicuous importance as building identifiers, significant definers of building aesthetics, and environmental mediators. This paper studies dynamic interrelationship between the evolution of tall building structural systems and façade design, beginning from the early tall buildings of skeletal structures with primitive curtainwalls to the recent supertall buildings of various tubular and outrigger structures with more advanced contemporary curtainwalls.

Computational study of the wind load on a free-form complex thin shell structure

  • Rodrigues, A. Moret;Tome, Ana;Gomes, M. Gloria
    • Wind and Structures
    • /
    • v.25 no.2
    • /
    • pp.177-193
    • /
    • 2017
  • The accelerated development of new materials, technologies and construction processes, in parallel with advances in computational algorithms and ever growing computational power, is leading to more daring and innovative architectural and structural designs. The search for non-regular building shapes and slender structures, as alternative to the traditional architectural forms that have been prevailing in the building sector, poses important engineering challenges in the assessment of the strength and mechanical stability of non-conventional structures and systems, namely against highly variable actions as wind and seismic forces. In case of complex structures, laboratory experiments are a widely used methodology for strength assessment and loading characterization. Nevertheless, powerful numerical tools providing reliable results are also available today and able to compete with the experimental approach. In this paper the wind action on a free-form complex thin shell is investigated through 3D-CFD simulation in terms of the pressure coefficients and global forces generated. All the modelling aspects and calibrating process are described. The results obtained showed that the CFD technique is effective in the study of the wind effects on complex-shaped structures.

Demonstration of Robust Micromachined Jet Technology and Its Application to Realistic Flow Control Problems

  • Chang Sung-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.554-560
    • /
    • 2006
  • This paper describes the demonstration of successful fabrication and initial characterization of micromachined pressure sensors and micromachined jets (microjets) fabricated for use in macro flow control and other applications. In this work, the microfabrication technology was investigated to create a micromachined fluidic control system with a goal of application in practical fluids problems, such as UAV (Unmanned Aerial Vehicle)-scale aerodynamic control. Approaches of this work include: (1) the development of suitable micromachined synthetic jets (microjets) as actuators, which obviate the need to physically extend micromachined structures into an external flow; and (2) a non-silicon alternative micromachining fabrication technology based on metallic substrates and lamination (in addition to traditional MEMS technologies) which will allow the realization of larger scale, more robust structures and larger array active areas for fluidic systems. As an initial study, an array of MEMS pressure sensors and an array of MEMS modulators for orifice-based control of microjets have been fabricated, and characterized. Both pressure sensors and modulators have been built using stainless steel as a substrate and a combination of lamination and traditional micromachining processes as fabrication technologies.

The tap-scan method for damage detection of bridge structures

  • Xiang, Zhihai;Dai, Xiaowei;Zhang, Yao;Lu, Qiuhai
    • Interaction and multiscale mechanics
    • /
    • v.3 no.2
    • /
    • pp.173-191
    • /
    • 2010
  • Damage detection plays a very important role to the maintenance of bridge structures. Traditional damage detection methods are usually based on structural dynamic properties, which are acquired from pre-installed sensors on the bridge. This is not only time-consuming and costly, but also suffers from poor sensitivity to damage if only natural frequencies and mode shapes are concerned in a noisy environment. Recently, the idea of using the dynamic responses of a passing vehicle shows a convenient and economical way for damage detection of bridge structures. Inspired by this new idea and the well-established tap test in the field of non-destructive testing, this paper proposes a new method for obtaining the damage information through the acceleration of a passing vehicle enhanced by a tapping device. Since no finger-print is required of the intact structure, this method can be easily implemented in practice. The logistics of this method is illustrated by a vehicle-bridge interaction model, along with the sensitivity analysis presented in detail. The validity of the method is proved by some numerical examples, and remarks are given concerning the potential implementation of the method as well as the directions for future research.