• Title/Summary/Keyword: non-thermal process

Search Result 394, Processing Time 0.025 seconds

Characteristics of Non-Thermal Plasma Process for Air Pollution Control (대기오염 물질 저감을 위한 저온 플라즈마 반응공정의 특성)

  • 송영훈;신동남;신완호;김관태;최연석;최영석;이원남;김석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.3
    • /
    • pp.247-256
    • /
    • 2000
  • Basic characteristics of non-thermal plasma process to remove C2H4 and NO have been experimentally investigated with a packed-bed type reactor and an ac power supply. The performance of the non-thermal plasma generated by ac power supply was compared with that of a wire-plate type reactor equipped with a pulsed power supply. The result shows that the non-thermal plasma can be effectively generated with an AC power supply that can be easily fabricated with conventional techniques. In order to understand the basic reaction mechanisms of the non-thermal plasma process, parametric tests for different carrier gases(air and nitrogen) and for different reaction pathways have been performed. The test results show that O3 generated by non-thermal plasma plays an dominant role to oxidize C2H4 and NO over N and O radicals when these pollutant gases are carried by dry air under room temperature condition. Experimental observations, however, indicate that N and O radicals can significantly affect on the removal process of the pollutant gases under certain conditions.

  • PDF

Combined De-NOx Process with $NH_3$ SCR and Non-thermal Plasma Process for Removing NOx and Soot from Diesel Exhaust Gases

  • Chung, Kyung-Yul;Song, Young-Hoon;Oh, Sang-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.657-665
    • /
    • 2003
  • Combined De-NOx Process in which $NH_3$ SCR (Selective Catalytic Reduction) and non-thermal Plasma Process are simultaneously used, has been investigated with a pilot test facility. The pilot test facility treats the combustion flue gases exhausted from a diesel engine that generates 240 kW of electrical power. Test results show that up to 80 % of NOx (NO and NO2) can be removed at 100 - $200^{\circ}C$. None of conventional De-NOx techniques works under such low temperature range. In addition to NOx. the Pilot test results show that soot can be simultaneously treated with the present non-thermal plasma technique. The present pilot test shows that the electrical power consumption to operate the non-thermal plasma reactor is equivalent to 3 - 4 % of the electrical power generated by the diesel engine.

An Experimental Study of Power Saving Technique in Non-thermal Plasma DeSOx/DeNOx Process (저온 플라즈마 탈황물질 공정의 운전전력 절감을 위한 실험연구)

  • 송영훈;최연석;김한석;신완호;길상인;정상현;최갑석;최현구;김석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.487-494
    • /
    • 1996
  • Simultaneous effects of $C_2H_4$ injection and heterogeneous chemical reactions on non-thermal plasma process to remove $SO_2$ and NOx from flue gas were investigated in the present experimental study. The present results showed that 40% of the electrical power can be reduced in $C_2H_4$ injection and heterogeneous chemical reaction are simultaneously included in the non-thermal plasma precess. As an effort to apply the non-thermal plasma technique to practical flue gas treatment system, a wire-plate type reactor which has technically similar geometry of industrial electrostatic precipitators is used instead of other types of reactors, such as wire-cylinder, packed-bed and surface discharge which are inappropriate to industrial application. In the present study, the photo pictures of positive streamer corona taken by ICCD camera, voltage and current oscillograms, and design criteria of a wire-plate type reactor are also shown, which are needed for industrial application of the non-thermal plasma process.

  • PDF

Biodegradation Rate of Recycling Soap Prepared from Non-Cooking Oils (폐식용유로 제조된 재생비누의 생분해 속도)

  • 신춘환;김희숙;허근태
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.83-91
    • /
    • 1996
  • A recycling soap was prepared from non-cooking oils. The effects of physlcal and chemical properties of the recycling soap on biodegradation are expected to be different due to the thermal histories of the non-cooking oils. Therefore, the biodegradation rate of the recycling soap was studied by using Klebssella Pneumoniae(K. pneumoniae), and the growth rate of K. pnewoniae in soap solution was observed. The biodegradation rate of the recycling soap appeared to be slower as the thermal histories of the non-cooking oils became larger. This might be resulted from hydrolysis, in which the ester bonds in the oils are broken to produce hydroxyl group. It was also observed that the growth rate of the microorganism decreased with the increase in the thermal histories of the oils. As a result, it is desired that recycling soap should be produced from the non-cooking oils with the prober ranges of thermal histories to reduce water contamination. The non-cooking oils with larger thermal histories are considered to be recycling through the cracking process before used. Key Words : non-cooking oils, recycling soap, thermal history, biodegradation, microorganism growth.

  • PDF

Quality comparison of non-thermal sterilized raw apple vinegar and commercial apple vinegar products

  • Sun Hwa Kim;Ji-Hyung Seo;Yong-Jin Jeong
    • Food Science and Preservation
    • /
    • v.31 no.2
    • /
    • pp.235-244
    • /
    • 2024
  • A nonthermally sterilized raw apple vinegar was manufactured using an ultra-fine filtration process (0.2 ㎛ membrane filter) and its quality was comparable to commercially available vinegar products. First, using apple concentrate as a raw material, it was possible to produce non-thermal sterilized Using a two-stage fermentation process of alcohol and acetic acid fermentations, a non-thermally sterilized raw apple vinegar with pH 2.94 and an acidity of 6.20% was produced from an apple concentrate. The fermentation process increased the browning index significantly. However, the fundamental quality parameters of the non-thermal sterilized raw apple vinegar (A) with sterilized apple vinegar (B) did not differ significantly. The pH (2.92-2.95) of apple vinegar (A and B) was higher than that (pH 2.65-2.70) of commercial vinegar (C and D), and the total acidity, which is in the range of 6.20-6.21% and 6.53-6.90%, respectively, was higher in samples C and D than in samples A and B. However, four kinds of organic acids were detected in non-thermal sterilized raw apple vinegar (A), and its total organic acid content (6,245.00 mg%) was significantly higher than that of other samples (B, C, D) (p<0.05). In particular, malic acid content, as a main organic acid in apples, was very high in sample (A) (244.83 mg%) and sample (B) (210.21 mg%), compared to commercial products C (125.78 mg%) and D (86.90 mg%). The total polyphenol content and antioxidant activity of fermented apple vinegar (A, B) were more than twice as high as those of commercial products (C, D). Vinegar A had higher total polyphenol content than vinegar B. The above results suggest it is possible to manufacture and commercialize non-thermal sterilized raw apple vinegar with higher organic acid content and antioxidant properties using ultra-fine filtration.

Development of 2-inch Plastic Film STN LCD

  • Park, Sung-Kyu;Han, Jeong-In;Kim, Won-Keun;Kwak, Min-Gi
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.14-19
    • /
    • 2000
  • Due to distinct properties of plastic substrates such as poor thermal resistance, non-rigidness and high thermal expansion, it is difficult to fabricate plastic film LCDs by conventional LCD processes. Poor thermal resistance and high thermal expansion of substrates induced deformation of substrates surface, mismatch of thermal expansion between ITO electrodes and substrates resulted in defects in the ITO electrodes during the high temperature process. Defects of ITO electrodes and non-uniform cell gap caused by non-rigid and flexible properties were also observed in the pressuring process. Based on in these observations, we used a newly developed material and fabrication process to prevent deformation of substrates, defects of electrodes and to maintain uniform cell gap. The maximum temperature of the process is limited up to $110^{\circ}C$ and pressure loaded during the process is five times less than conventional one. With these invented processes and materials, we obtained highly reliable Plastic Film STN LCDs whose electro-optical characteristics are better than or equivalent to those of typical glass LCDs.

  • PDF

Decomposition of Trichloroethylene by Using a Non-Thermal Plasma Process Combined with Catalyst (저온 플라즈마·촉매 복합공정을 이용한 트리클로로에틸렌의 분해에 관한 연구)

  • Mok, Young-Sun;Nam, Chang-Mo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.269-275
    • /
    • 2003
  • A non-thermal plasma process combined with $Cr_2O_3/TiO_2$ catalyst was applied to the decomposition of trichloroethylene (TCE). A dielectric barrier discharge reactor operated with AC high voltage was used as the non-thermal plasma reactor. The effects of reaction temperature and input power on the decomposition of TCE and the formation of byproducts including HCl, $Cl_2$, CO, NO, $NO_2$ and $O_3$ were examined. At an identical input power, the increase in the reaction temperature from 373 K to 473 K decreased the decomposition of TCE in the plasma reactor. The presence of the catalyst downstream the plasma reactor not only enhanced the decomposition of TCE but also affected the distribution of byproducts, significantly. However, synergistic effect as a result of the combination of non-thermal plasma with catalyst was not observed, i.e., the TCE decomposition efficiency in this plasma-catalyst combination system was almost similar to the sum of those obtained with each process.

  • PDF

Technical Development of Flue Gas Control at Commercial Plant Using the Non-thermal Plasma Process (저온 플라즈마 공정을 이용한 상용설비의 배연가스 처리 기술개발)

  • Yoo, J.S.;Paek, M.S.;Kim, T.H.;Kim, J.I.;Kim, Y.S.;Choi, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.939-944
    • /
    • 2001
  • For the application of simultaneous $DeSO_{2}\;&\;DeNO_{x}$ equipment using non-thermal plasma process to the industrial and power plants, the many types of plasma device and process were studied. The e-beam and pulsed plasma corona discharge process are outstanding for the study to apply commercial large-scale plant from among these. In this paper, non-thermal plasma of technical trends and the characteristics of system developed by Doosan heavy industries & construction Co., Ltd. are explained. We have researched pulsed plasma corona discharge process since 1994. At the basis of reasonable results for the pilot plant, we constructed the demonstration plant at a domestic coal-fired power plant in 1999, as the previous step for commercial use. In near future, enough information about designs and costs of commercial-size system will be obtained.

  • PDF

Decomposition of Acetonitrile Using a Planar Type Dielectric Barrier Discharge Reactor Packed with Adsorption and Catalyst Materials (평판형 유전체 장벽 방전 반응기에서 충진물질에 따른 아세토나이트릴의 분해 특성)

  • 김관태;송영훈;김석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.2
    • /
    • pp.157-165
    • /
    • 2003
  • A combined process of non-thermal plasma and catalytic technique has been investigated to treat $CH_3$CN gas in the atmosphere. A planar type dielectric barrier discharge (DBD) reactor has been used to generate the non-thermal plasma that produces various chemically active species, such as O, N, OH, $O_3$, ion, electrons, etc. Several different types of the beads. which are Molecular Sieve (MS) 5A, MS 13X, Pt/alumina beads, are packed into the DBD reactor, and have been tested to characterize the effects of adsorption and catalytic process on treating the $CH_3$CN gas in the DBD reactor. The test results showed that the operating power consumption and the amounts of the by-products of the non-thermal plasma process can be reduced by the assistance of the adsorption and catalytic process.

Non-thermal Plasma for Air Pollution Control Technology (저온 플라즈마 이용 대기환경설비기술)

  • Song, Young-Hoon
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.1-11
    • /
    • 2006
  • Non-thermal plasma technology for air pollution control, which are NOx, SOx, VOCs, soot, etc., is reviewed. In the early parts of the paper, generation of non-thermal plasma and plasma chemical process are introduced to provide an appropriate plasma condition (electron energy density) for treating air pollutions. Recent results on numerical simulation, optical diagnostics, and gas treatment are provided to characterize an optimal design of plasma generation and plasma chemical process. These data are also helpful to understand unique features of non-thermal plasma process that is achieved with relatively low temperature conditions, i.e. low enthalpy conditions of the treated gas molecules. In the later parts of the paper, several examples of recently developed non-thermal plasma techniques are illustrated, in which technical and economical assessments of the present techniques are provided.