• Title/Summary/Keyword: non-synoptic wind and turbulence

Search Result 4, Processing Time 0.017 seconds

Non-stationary and non-Gaussian characteristics of wind speeds

  • Hui, Yi;Li, Bo;Kawai, Hiromasa;Yang, Qingshan
    • Wind and Structures
    • /
    • v.24 no.1
    • /
    • pp.59-78
    • /
    • 2017
  • Non-stationarity and non-Gaussian property are two of the most important characteristics of wind. These two features are studied in this study based on wind speed records measured at different heights from a 325 m high meteorological tower during the synoptic wind storms. By using the time-frequency analysis tools, it is found that after removing the low frequency trend of the longitudinal wind, the retained fluctuating wind speeds remain to be asymmetrically non-Gaussian distributed. Results show that such non-Gaussianity is due to the weak-stationarity of the detrended fluctuating wind speed. The low frequency components of the fluctuating wind speeds mainly contribute to the non-zero skewness, while distribution of the high frequency component is found to have high kurtosis values. By further studying the decomposed wind speed, the mechanisms of the non-Gaussian distribution are examined from the phase, turbulence energy point of view.

Surface measurements of the 5 June 2013 damaging thunderstorm wind event near Pep, Texas

  • Gunter, W. Scott;Schroeder, John L.;Weiss, Christopher C.;Bruning, Eric C.
    • Wind and Structures
    • /
    • v.24 no.2
    • /
    • pp.185-204
    • /
    • 2017
  • High-resolution wind measurements at 2.25 m in height were used to investigate the mean and turbulence properties of an extreme thunderstorm wind event in West Texas. These data were combined with single Doppler scans from the Texas Tech University Ka-band mobile Doppler radars systems (TTUKa) to provide meteorological context over the surface measurement stations for portions of the outflow. Several features characteristic of a severe wind event were noted in the radar data, including a bowing portion of the thunderstorm complex and a small circulation on the leading edge. These features were reflected in the surface wind time histories and provided natural separation between various regions of the outflow. These features also contributed to the peak 1-s gust at all measurement stations. The turbulence characteristics of each outflow region were also investigated and compared. Reduced values of running turbulence intensity and elevated values of longitudinal integral scales were noted during the period of peak wind speed. Larger scales of turbulence within the outflow were also suggested via spectral analysis.

Numerical Study on Characteristics of Turbulence Scheme in Planetary Boundary Layer (난류 모수화 방법에 따른 대기경계층 수치모의 특성에 관한 연구)

  • Jeon, Won-Bae;Lee, Hwa-Woon;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.2
    • /
    • pp.137-148
    • /
    • 2010
  • This paper investigates the characteristics of turbulence schemes. Turbulence closures are fundamental for modeling the atmospheric diffusion, transport and dispersion in the boundary layer. In particular, in non-homogeneous conditions, a proper description of turbulent transport in planetary boundary layer is fundamental aspect. This study is based on the Regional Atmospheric Modeling System (RAMS) and combines four different turbulence schemes to assess if the different schemes have a impact on simulation results of vertical profiles. Two of these schemes are Isotropc Deformation scheme (I.Def) and Anisotropic deformation scheme (A.Def) that are simple local scheme based on Smagorinsky scheme. The other two are Mellor-Yamada scheme (MY2.5) and Deardorff TKE scheme (D.TKE) that are more complex non-local schemes that include a prognostic equation for turbulence kinetic energy. The simulated potential temperature, wind speed and mixing ratio are compared against radiosonde observations from the study region. MY2.5 shows consistently reasonable vertical profile and closet to observation. D.TKE shows good results under relatively strong synoptic condition especially, mixing ratio simulation. Validation results show that all schemes consistently underestimated wind speed and mixing ratio but, potential temperature was somewhat overestimated.

Characteristics of thunderstorms relevant to the wind loading of structures

  • Solari, Giovanni;Burlando, Massimiliano;De Gaetano, Patrizia;Repetto, Maria Pia
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.763-791
    • /
    • 2015
  • "Wind and Ports" is a European project that has been carried out since 2009 to handle wind forecast in port areas through an integrated system made up of an extensive in-situ wind monitoring network, the numerical simulation of wind fields, the statistical analysis of wind climate, and algorithms for medium-term (1-3 days) and short term (0.5-2 hours) wind forecasting. The in-situ wind monitoring network, currently made up of 22 ultrasonic anemometers, provides a unique opportunity for detecting high resolution thunderstorm records and studying their dominant characteristics relevant to wind engineering with special concern for wind actions on structures. In such a framework, the wind velocity of thunderstorms is firstly decomposed into the sum of a slowly-varying mean part plus a residual fluctuation dealt with as a non-stationary random process. The fluctuation, in turn, is expressed as the product of its slowly-varying standard deviation by a reduced turbulence component dealt with as a rapidly-varying stationary Gaussian random process with zero mean and unit standard deviation. The extraction of the mean part of the wind velocity is carried out through a moving average filter, and the effect of the moving average period on the statistical properties of the decomposed signals is evaluated. Among other aspects, special attention is given to the thunderstorm duration, the turbulence intensity, the power spectral density and the integral length scale. Some noteworthy wind velocity ratios that play a crucial role in the thunderstorm loading and response of structures are also analyzed.