• 제목/요약/키워드: non-stationary response

검색결과 71건 처리시간 0.023초

점탄성감쇠기를 설치한 비비례 감쇠 구조물의 풍응답 해석 (Analysis of a Non-proportionally Damped Structure Equipped with Viscoelastic Dampers Subjected to Stationary Wind Loads)

  • 김진구;이창용
    • 한국전산구조공학회논문집
    • /
    • 제12권4호
    • /
    • pp.649-659
    • /
    • 1999
  • 본 연구에서는 점탄성감쇠기가 설치된 비비례 감쇠 구조물의 바람에 대한 확률적 응답을 진동수영역에서 구하였다. 복소수 고유치 및 고유백터를 바탕으로 모드중첩법을 이용하여 응답의 RMS 값을 구하고 그것을 근사적인 방법인 모드 변형에너지법에서 얻은 결과와 비교하였다. 또한, 가력 진동수에 따라서 변하는 점탄성감쇠기의 강성 및 감쇠 계수를 상수로 모형화하였을 때의 풍응답 해석 결과의 정확성을 진동수영역에서 검증하였다. 해석결과에 의하면 감쇠기의 진동수 의존 특성은 구조물의 1차 고유 진동수에 의해서 비교적 정확하게 표현되었고, 모드 변형에너지법은 대체로 정확한 결과를 도출하였지만, 가속도 응답을 구할 때에는 다소 큰 오차를 유발하였다.

  • PDF

Numerical simulation in time domain to study cross-flow VIV of catenary riser subject to vessel motion-induced oscillatory current

  • Liu, Kun;Wang, Kunpeng;Wang, Yihui;Li, Yulong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.491-500
    • /
    • 2020
  • The present study proposes a time domain model for the Vortex-induced Vibration (VIV) simulation of a catenary riser under the combination of the current and oscillatory flow induced by vessel motion. In this model, the hydrodynamic force of VIV comprises excitation force, hydrodynamic damping and added mass, which are taken as functions of the non-dimensional frequency and amplitude ratio. The non-dimensional frequency is related with the response frequency, natural frequency, lock-in range and the fluid velocity. The relatively oscillatory flow induced by vessel motion is taken into account in the fluid velocity. Considering that the added mass coefficient and the non-dimensional frequency can affect each other, an iterative analysis is conducted at each time step to update the added mass coefficient and the natural frequency. This model is in detail validated against the published test models. The results show that the model can reasonably reflect the effect of the added mass coefficient on the VIV, and can well predict the riser's VIV under stationary and oscillatory flow induced by vessel motion. Based on the model, this study carries out the VIV simulation of a catenary riser with harmonic vessel motion. By analyzing the bending moment near the touchdown point, it is found that under the combination of the ocean current and oscillatory flow the vessel motion may decrease the VIV response, while increase the excited frequencies. In addition, the decreasing rate of the VIV under vessel surge is larger than that under vessel heave at small vessel motion velocity, while the situation becomes opposite at large vessel motion velocity.

Application of neural networks and an adapted wavelet packet for generating artificial ground motion

  • Asadi, A.;Fadavi, M.;Bagheri, A.;Ghodrati Amiri, G.
    • Structural Engineering and Mechanics
    • /
    • 제37권6호
    • /
    • pp.575-592
    • /
    • 2011
  • For seismic resistant design of critical structures, a dynamic analysis, either response spectrum or time history is frequently required. Owing to the lack of recorded data and the randomness of earthquake ground motion that may be experienced by structure in the future, usually it is difficult to obtain recorded data which fit the requirements (site type, epicenteral distance, etc.) well. Therefore, the artificial seismic records are widely used in seismic designs, verification of seismic capacity and seismic assessment of structures. The purpose of this paper is to develop a numerical method using Artificial Neural Network (ANN) and wavelet packet transform in best basis method which is presented for the decomposition of artificial earthquake records consistent with any arbitrarily specified target response spectra requirements. The ground motion has been modeled as a non-stationary process using wavelet packet. This study shows that the procedure using ANN-based models and wavelet packets in best-basis method are applicable to generate artificial earthquakes compatible with any response spectra. Several numerical examples are given to verify the developed model.

ARIMA와 VAR·VEC 모형에 의한 부산항 물동량 예측과 관련성연구 (Study on the Forecasting and Relationship of Busan Cargo by ARIMA and VAR·VEC)

  • 이성윤;안기명
    • 한국항해항만학회지
    • /
    • 제44권1호
    • /
    • pp.44-52
    • /
    • 2020
  • 세계적인 장기경기침체 속에서 보다 정확한 물동량 예측은 항만정책 수행에 중요하다. 따라서, 본 연구에서는 부산항 컨테이너 물동량(수출입화물과 환적화물)을 단변량 모형인 ARIMA 뿐만 아니라 인과관계가 있을 것으로 예상되는 경제규모(한국, 중국, 미국의 국내총생산), 금리수준 그리고 경기변동을 고려한 벡터자기회귀모형과 벡터오차수정모형을 활용하여 추정하고 비교하였다. 측정자료는 2014년 1월부터 2019년 8월까지 월별 부산항 컨테이너 물동량이다. 분석결과에 의하면, 수출입물동량 시계열은 비교적 안정적(stationary)이어서 VAR에 의해 추정하였고 환적화물은 불안정적(non-stationary)하지만, 경제규모, 금리 및 경기변동과 공적분(장기적인 균형관계)를 띠고 있어 VEC모형으로 추정하였다. 추정결과, 안정적인 수출입화물 추정에서는 단변량 모형인 ARIMA가 우수하고 추세가 있는 환적화물은 다변량모형인 VEC모형이 보다 예측력이 우수한 것으로 나타나고 있다. 특히 수출입화물은 우리나라 경제규모와 관련이 있고, 환적화물은 중국과 미국 경제규모와 밀접한 관련이 있다. 또한 중국 경제규모가 미국에 비하여 더 밀접하게 나타나고 있어 환적화물 증대전략에 시사점을 주고 있다.

Gust durations, gust factors and gust response factors in wind codes and standards

  • Holmes, John D.;Allsop, Andrew C.;Ginger, John D.
    • Wind and Structures
    • /
    • 제19권3호
    • /
    • pp.339-352
    • /
    • 2014
  • This paper discusses the appropriate duration for basic gust wind speeds in wind loading codes and standards, and in wind engineering generally. Although various proposed definitions are discussed, the 'moving average' gust duration has been widely accepted internationally. The commonly-specified gust duration of 3-seconds, however, is shown to have a significant effect on the high-frequency end of the spectrum of turbulence, and may not be ideally suited for wind engineering purposes. The effective gust durations measured by commonly-used anemometer types are discussed; these are typically considerably shorter than the 'standard' duration of 3 seconds. Using stationary random process theory, the paper gives expected peak factors, $g_u$, as a function of the non-dimensional parameter ($T/{\tau}$), where T is the sample, or reference, time, and ${\tau}$ is the gust duration, and a non-dimensional mean wind speed, $\bar{U}.T/L_u$, where $\bar{U}$ is a mean wind speed, and $L_u$ is the integral length scale of turbulence. The commonly-used Durst relationship, relating gusts of various durations, is shown to correspond to a particular value of turbulence intensity $I_u$, of 16.5%, and is therefore applicable to particular terrain and height situations, and hence should not be applied universally. The effective frontal areas associated with peak gusts of various durations are discussed; this indicates that a gust of 3 seconds has an equivalent frontal area equal to that of a tall building. Finally a generalized gust response factor format, accounting for fluctuating and resonant along-wind loading of structures, applicable to any code is presented.

Response of steel pipeline crossing strike-slip fault in clayey soils by nonlinear analysis method

  • Hadi Khanbabazadeh;Ahmet Can Mert
    • Geomechanics and Engineering
    • /
    • 제34권4호
    • /
    • pp.409-424
    • /
    • 2023
  • Response of the pipeline crossing fault is considered as the large strain problem. Proper estimation of the pipeline response plays important role in mitigation studies. In this study, an advanced continuum modeling including material non-linearity in large strain deformations, hardening/softening soil behavior and soil-pipeline interaction is applied. Through the application of a fully nonlinear analysis based on an explicit finite difference method, the mechanics of the pipeline behavior and its interaction with soil under large strains is presented in more detail. To make the results useful in oil and gas engineering works, a continuous pipeline of two steel grades buried in two clayey soil types with four different crossing angles of 30°, 45°, 70° and 90° with respect to the pipeline axis have been considered. The results are presented as the fault movement corresponding to different damage limit states. It was seen that the maximum affected pipeline length is about 20 meters for the studied conditions. Also, the affected length around the fault cutting plane is asymmetric with about 35% and 65% at the fault moving and stationary block, respectively. Local buckling is the dominant damage state for greater crossing angle of 90° with the fault displacement varying from 0.4 m to 0.55 m. While the tensile strain limit is the main damage state at the crossing angles of 70° and 45°, the cross-sectional flattening limit becomes the main damage state at the smaller 30° crossing angles. Compared to the stiff clayey soil, the fault movement resulting 3% tensile strain limit reach up to 40% in soft clayey soil. Also, it was seen that the effect of the pipeline internal pressure reaches up to about 40% compared to non-pressurized condition for some cases.

Cross Talk among Pyroelectric Sensitive Elements in Thermal Imaging Device

  • Bang Jung Ho;Yoon Yung Sup
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 학술대회지
    • /
    • pp.780-783
    • /
    • 2004
  • The two-dimensional modeling of the non-stationary thermal state and voltage responsivity of the sensitive elements usually used in solid-state pyroelectric focal plane arrays are presented. Temperature distributions under periodical thermal excitation and the response of the thermal imaging device, which is composed of the pyroelectric sensitive elements mounted on a single silicon substrate, are numerically calculated. The sensitive element consists of a covering metal layer, infrared polymer absorber, front metal contact, sensitive pyroelectric element, the interconnecting column and the bulk silicon readout. The results of the numerical modeling show that the thermal crosstalk between sensitive elements to be critical especially at low frequency (f < 10Hz) of periodically modulated light. It is also shown that the use of our models gives the possibility to improve the design, operating regimes and sensitivity of the device.

  • PDF

三次元數値모델을 使용한 東支那海의 定常均一風의 應力에 의한 海流의 算定 (Comoutation of Currents Driven by a Steady Uniform Wind Stress on the East China Sea using a Three-dimensional Numerical Model)

  • 최병호
    • 한국해양학회지
    • /
    • 제19권1호
    • /
    • pp.36-43
    • /
    • 1984
  • 複雜한 沿岸地形 및 水深變化를 考慮한 黃海 및 東支那海의 三次元 水動力學的 羞恥모델을 開發하여 定常均一風의 應力에 의한 海流의 手織分布를 算定하였다. 北西風 및 南西風의 秒速 약 10m에 該當하는 海面應力 1.6dyne/$\textrm{cm}^2$에 의한 陸棚體系의 反應을 調査하기 위한 手織實驗에서 動的 循環形態를 提示하고 檢討하였다.

  • PDF

시간-주파수 변환을 이용한 고속철도차량의 동특성 분석 (Analysis of Dynamic Characteristics of High Speed Trains Using a Time Varying Frequency Transform)

  • 이준석;최성훈;김상수;박춘수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.841-848
    • /
    • 2008
  • This paper examined dynamic characteristics of high speed trains using a time varying frequency transform. Fourier transform based methods are frequently used for the calculation of the dynamic characteristics of trains in the frequency domain, but they cannot represent the time-varying characteristics. Therefore it is necessary to examine their characteristics using a time-varying frequency transform. For the examination, the non-stationary vibration of wheelset, bogie, and carbody are measured using accelerometers and stored in a data aquisition system. They are processed with localization of the data by modulating with a window function, and Fourier transform is taken to each localized data, called the short-time Fourier transform. From the processed results, time varying auto-spectral density, cross-spectral density, frequency response, and coherence functions have been calculated. From the analysis, it is confirmed that the time varying frequency transform is a useful method for analyzing the dynamic characteristics of high speed trains.

  • PDF

MMSE Estimator 기반의 적응 콤 필터링을 이용한 잡음 제거 (Noise Reduction Using MMSE Estimator-based Adaptive Comb Filtering)

  • 박정식;오영환
    • 대한음성학회지:말소리
    • /
    • 제60호
    • /
    • pp.181-190
    • /
    • 2006
  • This paper describes a speech enhancement scheme that leads to significant improvements in recognition performance when used in the ASR front-end. The proposed approach is based on adaptive comb filtering and an MMSE-related parameter estimator. While adaptive comb filtering reduces noise components remarkably, it is rarely effective in reducing non-stationary noises. Furthermore, due to the uniformly distributed frequency response of the comb-filter, it can cause serious distortion to clean speech signals. This paper proposes an improved comb-filter that adjusts its spectral magnitude to the original speech, based on the speech absence probability and the gain modification function. In addition, we introduce the modified comb filtering-based speech enhancement scheme for ASR in mobile environments. Evaluation experiments carried out using the Aurora 2 database demonstrate that the proposed method outperforms conventional adaptive comb filtering techniques in both clean and noisy environments.

  • PDF