• Title/Summary/Keyword: non-spalling

Search Result 23, Processing Time 0.016 seconds

A Study on the Spalling Properties of High Strength Concrete Using Synthetic Fiber (유기섬유를 혼입한 고강도 콘크리트의 폭렬 특성에 관한 실험적 연구)

  • Jeon, Chan Ki;Jeon, Joong Kyu
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.1
    • /
    • pp.18-26
    • /
    • 2012
  • Accordingly architectural structure is getting high-rise and bigger, a use of high strength and high performance concrete has been increasing. High performance concrete has cons of explosion in a fire. This Explosion in the fire can cause the loss of the sheath on a concrete surface, therefore it effects that increasing a rate of heat transmission between the steel bar and inner concrete. Preventing this explosion of high performance concrete in the fire, many kinds of researches are now in progressing. Typically, researches with using Polypropylene-fiber and Steel-fiber can prove controling the explosion, but the reduction of mobility was posed as a problem of workability. Consequently, to solve the problem as mentioned above, concrete cans secure fire resisting capacity through the using of coating liquid, including Ester-lubricant and non-ionic characteristic surfactant. This research has been drawn a ideal condition in compressive strength areas of concrete by an experiment. When applying 13mm of polyamide-fiber, proper fiber mixing volume by compressive strength areas of concrete is $0.8kg/m^3$ in 60MPa, $1.0kg/m^3$ in 80MPa, $1.5kg/m^3$ in $100MPa/m^3$. These amount of a compound can control the explosion.

Characteristics of Alkali-Silica Reaction according to Types and Substitution Ratios of Mineral Admixtures in Korea (국내 광물성 혼화재의 종류 및 혼입률에 따른 알칼리-실리카 반응 특성)

  • Kim, Seong-Kwon;Hong, Seung-Ho;Hur, In;Yun, Kyong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • The distresses of alkali-silica reaction (ASR) was recently reported at highway cement concrete pavement in Korea, which showed typical cracking and spalling patterns of ARS. Korea is was no longer safe zone against ASR, needding to find a control methodology against ASR. The purpose of this research was to provide a control methodology against ASR using mineral admixtures through a series of laboratory test program. Laboratory works included the accelerated mortar bar test (AMBT) by ASTM C 1260 regulation with five types of aggregate and three types of mineral admixtures (fly ash, ground granulated blast-furnace slag and silica fume). The result of ASTM C 1260 test for five types of aggregates without mineral admixtures showed that Siltstone and Mudstone were found to be "reactive." Tuff and Andesite-1 were found to be "possiblely reactive." In case of concrete mixed with 10, 20, and 30% fly ash, all specimens except Mudstone mixed with 10% FA were found to be "non-reactive". In cases of concrete mixed with 30, 40, and 50% ground granulated blast-furnace slag and 5, 7.5, and 10% silica fume, all specimens were found to be "non-reactive." These results could be selectively applied in constructions in Korea.

A Study on Microstructure, Mechanical Properties, Friction and Adhesion of TiN Thin Films Coated on SKD61 and Radical Nitrided SKD61 Substrates by Arc Ion Plating (SKD61과 Radical Nitriding 처리된 SKD61 기판상에 Arc Ion Plating으로 증착된 TiN 박막의 미세구조 및 기계적 특성, 마찰 및 접착력에 관한 연구)

  • Joo, Yun-Kon;Yoon, Jae-Hong;Fang, Wei;Zhang, Shi-Hong;Cho, Tong-Yul;Ha, Sung-Sik
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.6
    • /
    • pp.254-257
    • /
    • 2007
  • TiN coating on tool steel has been widely used for the improvement of durability of tools. In this work, radical nitriding(RN) is carried out on SKD61 at $450^{\circ}C$ for 5 hours in the ammonia gas pressure $2.7{\times}10^3\;Pa$. The TiN coating is carried out by arc ion plating(AIP) with the process parameters: arc power 150 A, bias voltage -50V, coating time 40 minutes and nitrogen gas pressure $4{\times}10^3\;Pa$. Hardness, elastic modulus, friction coefficient and adhesion of TiN coating on substrates of both TiN/SKD61 and TiN/RN SKD61 coatings are investigated comparatively. The primary crystalline faces of TiN surface are(200) and(111) for TiN/SKD61 and TiN/RN SKD61 respectively. In addition to the primary phase, Fe phase exists in TiN/SKD61 coating, but not in TIN/RN SKD61. The hardness of TiN/RN SKD61 is about 700 Hv, 250 Hv(56%) higher than that of TiN/SKD61 at the near interface of TiN and substrates. At the TiN surface, hardness of TiN/RN SKD61 is 2,149 Hv, 71 Hv(3%) higher than that of TiN/SKD61. The elastic modulus of TiN coating is improved to 26.7 GPa(6%) by radical nitriding. The adhesion is improved by the RN coating showing no spalling. buckling and chipping on the scratch test track which are shown on the non-RN TiN/SKD61.