• Title/Summary/Keyword: non-regenerative relay

Search Result 4, Processing Time 0.021 seconds

Performance Analysis of Full Duplex on-regenerative Relay

  • Ban, Tae-Won;Jung, Bang-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.647-651
    • /
    • 2011
  • In this letter, non-regenerative Amplify-and-Forward (AF) relay systems based on half and full duplex schemes are investigated and their performance is analyzed and compared in terms of outage probability. Although the AF relay systems have been widely investigated in many previous literatures, most of them adopted a half duplex scheme due to hardware limitation and mathematical tractability. To the best of our knowledge, this letter is the first study to investigate the performance of the full duplex AF relay system considering practical hardware limitations. In full duplex AF relay systems, it is important to secure the isolation between transmit and receive antennas. Our numerical and simulation results show that there exists a threshold point of the isolation gain that the full duplex relay system outperforms the half duplex relay system.

Precoding for a Non-regenerative MIMO Relay in a Spectrum Sharing Cognitive Radio Network (스펙트럼 공유 인지라디오 네트워크에서의 비재생적 다중안테나 중계 시스템을 위한 프리코딩)

  • Lee, Panhyung;Lee, Jae Hong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.29-31
    • /
    • 2013
  • 본 논문에서는 기존라디오(primary) 네트워크와 스펙트럼을 공유하는(spectrum sharing) 인지라디오(cognitive radio) 네트워크에서 비재생적(non-regenerative) 다중안테나 중계 (relay) 시스템을 위한 소스(source) 및 중계기 프리코딩(precoding) 기법을 제안한다. 제안된 기법은 소스와 중계기 프리코딩 행렬의 최적해를 구하기 위해 QCQP(Quadratically Constrained Quadratic Programming) 문제를 통해 구한다. 제안된 기법은 기존라디오 수신기에서의 간섭세기 제한을 만족하면서 낮은 MSE(Mean squared error)와 높은 MI(Mutual Information)를 달성함을 모의실험결과를 통해 보인다. 또한 아주 빠른 속도로 최적해로 수렴함을 보이고 있다.

  • PDF

Optimization for Relay-Assisted Broadband Power Line Communication Systems with QoS Requirements Under Time-varying Channel Conditions

  • Wu, Xiaolin;Zhu, Bin;Wang, Yang;Rong, Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4865-4886
    • /
    • 2017
  • The user experience of practical indoor power line communication (PLC) applications is greatly affected by the system quality-of-service (QoS) criteria. With a general broadcast-and-multi-access (BMA) relay scheme, in this work we investigate the joint source and relay power optimization of the amplify-and-forward (AF) relay systems used under indoor broad-band PLC environments. To achieve both time diversity and spatial diversity from the relay-involved PLC channel, which is time-varying in nature, the source node has been configured to transmit an identical message twice in the first and second signalling phase, respectively. The QoS constrained power allocation problem is not convex, which makes the global optimal solution is computationally intractable. To solve this problem, an alternating optimization (AO) method has been adopted and decomposes this problem into three convex/quasi-convex sub-problems. Simulation results show the fast convergence and short delay of the proposed algorithm under realistic relay-involved PLC channels. Compared with the two-hop and broadcast-and-forward (BF) relay systems, the proposed general relay system meets the same QoS requirement with less network power assumption.

Self-Interference Cancellation-Aided Relay Beamforming for Multi-Way Relaying Systems (다중방향 릴레이 시스템을 위한 자가간섭 소거 보조 릴레이 빔형성 기법)

  • Le, Anh Duc;Park, Jin Bae;Cho, Yong Ok;Jeong, Min A;Lee, Seong Ro;Kim, Yun Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.4
    • /
    • pp.378-386
    • /
    • 2013
  • In this paper, we propose a multi-way relaying system, in which N communicating nodes interchange their information one another by the help of a multiple-antenna non-regenerative relay station (RS). While the conventional multi-way relaying requires 2N transmission phases to complete the data exchange, the proposed system completes the mission with N phases composed of one multiple access phase and N-1 broadcast phases. For effective broadcast transmission, the proposed system pairs users for signal transmission with a new RS beamforming matrix not to interfere with the nodes of different pairs and a self-interference canceler at each node. The performance evaluation in terms of the average sum rate shows that the proposed system outperforms the conventional one with more significant gain when the number of RS antennas is comparable to the number of communicating nodes. The proposed schemes can be applicable to marine communications where the ships need to share their information with extended coverage.