• Title/Summary/Keyword: non-real time process

Search Result 244, Processing Time 0.024 seconds

Development of Fracture Toughness Evaluation Method for Composite Materials by Non-Destructive Testing Method (비파괴검사법을 이용한 복합재료의 파괴인성 평가법 개발)

  • Lee, Y.T.;Kim, K.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.4
    • /
    • pp.278-291
    • /
    • 1998
  • Fracture process of continuous fiber reinforced composites is very complex because various fracture mechanisms such as matrix cracking, debonding, delamination and fiber breaking occur simultaneously during crack growth. If fibers cause crack bridging during crack growth, the stable crack growth and unstable crack growth appear repeatedly. Therefore, it is very difficult to exactly determine tile starting point of crack growth and the fracture toughness at the critical crack length in composites. In this research, fracture toughness test for CFRP was accomplished by using acoustic emission(AE) and recording of tile fracture process in real time by video-microscope. The starting point of crack growth, pop-in point and the point of unstable crack growth can be exactly determined. Each fracture mechanism can be classified by analyzing the fracture process through AE and video-microscope. The more reliable method ior the fracture toughness measurement of composite materials was proposed by using the combination of R-curve method, AE and video microscope.

  • PDF

Quality monitoring of complex manufacturing systems on the basis of model driven approach

  • Castano, Fernando;Haber, Rodolfo E.;Mohammed, Wael M.;Nejman, Miroslaw;Villalonga, Alberto;Lastra, Jose L. Martinez
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.495-506
    • /
    • 2020
  • Monitoring of complex processes faces several challenges mainly due to the lack of relevant sensory information or insufficient elaborated decision-making strategies. These challenges motivate researchers to adopt complex data processing and analysis in order to improve the process representation. This paper presents the development and implementation of quality monitoring framework based on a model-driven approach using embedded artificial intelligence strategies. In this work, the strategies are applied to the supervision of a microfabrication process aiming at showing the great performance of the framework in a very complex system in the manufacturing sector. The procedure involves two methods for modelling a representative quality variable, such as surface roughness. Firstly, the hybrid incremental modelling strategy is applied. Secondly, a generalized fuzzy clustering c-means method is developed. Finally, a comparative study of the behavior of the two models for predicting a quality indicator, represented by surface roughness of manufactured components, is presented for specific manufacturing process. The manufactured part used in this study is a critical structural aerospace component. In addition, the validation and testing are performed at laboratory and industrial levels, demonstrating proper real-time operation for non-linear processes with relatively fast dynamics. The results of this study are very promising in terms of computational efficiency and transfer of knowledge to manufacturing industry.

Non-Intrusive Healthcare System for Estimation of Vascular Condition in IP-Enabled Wireless Network (IP 기반 무선네트워크에서의 혈관상태 평가를 위한 무구속 헬스케어 시스템)

  • Jung, Sang-Joong;Kwon, Tae-Ha;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.76-83
    • /
    • 2013
  • A real-time wireless monitoring and analysis methods using the wearable PPG sensor to estimate cardiovascular condition is studied for ubiquitous healthcare service. A small size and low-power consuming wearable photoplethysmogram (PPG) sensor is designed as a wrist type device and connected with the IP node assigned its own IPv6 address. The measured PPG waveform in the IP node is collected and transferred to a central server PC through the IP-enabled wireless network for storage and analysis purposes. A monitoring and analysis program is designed to process the accelerated plethysmogram (APG) waveform by applying the second order derivatives to analyze systolic waves as well as heart rate variability analysis from the measured PPG waveform. From our results, the features of cardiovascular condition from individual's PPG waveform and estimation of vascular compliance by the comparison of APG-aging index (AI) and ratio of LF/HF are demonstrated.

Synthesizing multi-loop control systems with period adjustment and Kernel compilation (주기 조정과 커널 자동 생성을 통한 다중 루프 시스템의 구현)

  • Hong, Seong-Soo;Choi, Chong-Ho;Park, Hong-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.187-196
    • /
    • 1997
  • This paper presents a semi-automatic methodology to synthesize executable digital controller saftware in a multi-loop control system. A digital controller is described by a task graph and end-to-end timing requirements. A task graph denotes the software structure of the controller, and the end-to-end requirements establish timing relationships between external inputs and outputs. Our approach translates the end-to-end requirements into a set of task attributes such as task periods and deadlines using nonlinear optimization techniques. Such attributes are essential for control engineers to implement control programs and schedule them in a control system with limited resources. In current engineering practice, human programmers manually derive those attributes in an ad hoc manner: they often resort to radical over-sampling to safely guarantee the given timing requirements, and thus render the resultant system poorly utilized. After task-specific attributes are derived, the tasks are scheduled on a single CPU and the compiled kernel is synthesized. We illustrate this process with a non-trivial servo motor control system.

  • PDF

Nozzle Condition Monitoring System for Abrasive Waterjet Process (연마재 워터젯을 위한 노즐상태 모니터링 시스템 설계)

  • Kim, Jeong-Uk;Kim, Roh-Won;Kim, Chul-Min;Kim, Sung-Ryul;Kim, Hyun-Hee;Lee, Kyung-Chang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.817-823
    • /
    • 2020
  • In recent, the machining of difficult-to-cut materials such as titanium alloys, stainless steel, Inconel, ceramic, glass, and carbon fiber reinforced plastics (CFRP) used in aerospace, automobile, medical industry is actively researched. Abrasive waterjet is a non-traditional processing method in which ultra-high pressure water and abrasive particles are mixed in a mixing chamber and shoot out jet through a nozzle, and removed by erosion due to collision with a material. In particular, the nozzle of the abrasive waterjet is one of the most important parts that affect the machining quality as with a cutting tool in general machining. It is very important to monitor the condition of the nozzle because the workpiece is uncut or the surface quality deteriorates due to wear, expanding of the bore, damage of the nozzle and clogging of the abrasive, etc. Therefore, in this paper, we propose a monitoring system based on Acoustic Emission(AE) sensor that can detect nozzle condition in real time during AWJ processing.

Self-Modeling Curve Resolution Analysis of On-line Near Infrared Spectra Measured during the Melt-Extrusion Transesterification of Ethylene/Vinylacetate Copolymer

  • Sasic, Slobodan;Kita, Yasuo;Furukawa, Tsuyoshi;Watari, Masahiro;Siesler, Heinz W.;Ozaki, Yukihiro
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1284-1284
    • /
    • 2001
  • The transesterification of molten ethylene/vinylacetate (EVA) copolymers by octanol as a reagent and sodium methoxide as a catalyst in an extruder has been monitored by on-line near infrared (NIR) spectroscopy. A total of 60 NIR spectra were acquired for 37 minutes with the last spectrum recorded 31 minutes after the addition of octanol and catalyst was stopped. The experimental spectra show strong baseline fluctuations which are corrected for by multiplicative scatter correction (MSC). The chemometric methods of orthogonal projection approach (OPA) and multivariate curve resolution (MCR) were used to resolve the spectra and to derive concentration profiles of the species. The detailed analysis reveals the absence of completely pure variables that leads to small errors in the calculation of pure spectra. The initial estimation of a concentration that is necessary as an input parameter for MCR also presents a non-trivial task. We obtained results that were not ideal but applicable for practical concentration control. They enable a fast monitoring of the process in real-time and resolve the spectra of the EVA copolymer and the ethylene/vinyl alcohol (EVAL) copolymer to be very close to the reference spectra. The chemometric methods used and the decomposed spectra are discussed in detail.

  • PDF

A Study on Automatic Inspection Technology of Machinery Parts Based on Pattern Recognition (패턴인식에 의한 기계부품 자동검사기술에 관한 연구)

  • Cha, Bo-Nam;Roh, Chun-Su;Kang, Sung-Ki;Kim, Won-il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.2
    • /
    • pp.77-83
    • /
    • 2014
  • This paper describes a new technology to develop the character recognition technology based on pattern recognition for non-contacting inspection optical lens slant or precision parts, and including external form state of lens or electronic parts for the performance verification, this development can achieve badness finding. And, establish to existing reflex data because inputting surface badness degree of scratch's standard specification condition directly, and error designed to distinguish from product more than schedule error to badness product by normalcy product within schedule extent after calculate the error comparing actuality measurement reflex data and standard reflex data mutually. Developed system to smallest 1 pixel unit though measuring is possible 1 pixel as $37{\mu}m{\times}37{\mu}m$ ($0.1369{\times}10-4mm^2$) the accuracy to $1.5{\times}10-4mm$ minutely measuring is possible performance verification and trust ability through an experiment prove.

A Study About Weld Defects Detection By Using A Magnetostrictive Sensor (Magnetostrictive Sensor를 이용한 용접결함 검출에 관한 연구)

  • Na, Hyun-Ho;Kim, Ill-Soo;Seo, Joo-Hwan;Son, Sung-Woo;Jeong, Jae-Won;Kim, Ji-Sun;Lee, Ji-Hye
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1279-1287
    • /
    • 2009
  • An increasingly competitive business environment has been concentrated on industries to reduce the operating costs. Industries such as gas, oil, petrochemical, chemical, and electric power have employed for the operation and used for large equipment or structures that require a high capital investment. In order to meet these requirements, the industries are increasingly moving toward saving the experimental verification and computer simulation. Therefore industries to reduce the maintenance costs without compromising the operational safety have been forced on finding for better and more efficient methods to inspect their equipment and structures. In this study, it focused on the development the real-time non-contract monitoring system as an efficient tool for the experimental study of weld defects based on the relationship between the measured voltage and input parameters.

The Aesthetics of Chinese Garden -with special reference to Yi-Jing (중국정원의 미학 -조영과 감상의 미적 경계를 중심으로-)

  • 이유직;조정송
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.24 no.3
    • /
    • pp.79-95
    • /
    • 1996
  • The traditional gardens of China were constructed on the basis of the common aesthetic consciousness between designers and users. As designers and users communicated each other through the medium of garden, they give suggestions to our design and appreciation of modern landscape architecture. The traditional gardens of China pursued to reach the state of Yi Jing(意境), and this state formed the keynote of the whole field of Chinese culture. Yi Jing is the aesthetic theory originated in Pre-Qin Era, and established in Tang-Dynasty. After this, this theory become the very important aesthetic category of Chinese aesthetics. Yi Jing is the process from conception to appreciation, and requires the three parts of designer, a work of art, and appreciator. To reach Yi Jing, designers must be well grounded and persevere in their efforts. They also had to have the ability of corresponding the inner order of environment and landscape, and expressing their own feelings and emotions into gardens. So ultimately, they were in pursuit of constructing the gardens as if something naturally created. The garden itself is the meeting place of designers and users. The space in which users can think of life, nature, history, and cosmos. In order to do this, designers design the real landscape and non-visual landscape. This design can give appreciators more fertile imagination. Appreciation perfects the Yi Jing of gardens. Yi Jing is created by co-work of artist and appreciator with common aesthetic consciousness and sense. Therefore, it is subjective, and it may be vary with man and time.

  • PDF

Application of Three-Dimensional Light Microscopy for Thick Specimen Studies

  • Rhyu, Yeon Seung;Lee, Se Jeong;Kim, Dong Heui;Uhm, Chang-Sub
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • The thickness of specimen is an important factor in microscopic researches. Thicker specimen contains more information, but it is difficult to obtain well focused image with precise details due to optical limit of conventional microscope. Recently, a microscope unit that combines improved illumination system, which allows real time three-dimensional (3D) image and automatic z-stack merging software. In this research, we evaluated the usefulness of this unit in observing thick samples; Golgi stained nervous tissue and ground prepared bone, tooth, and non-transparent small sample; zebra fish teeth. Well focused image in thick samples was obtained by processing z-stack images with Panfocal software. A clear feature of neuronal dendrite branching pattern could be taken. 3D features were clearly observed by oblique illumination. Furthermore, 3D array and shape of zebra fish teeth was clearly distinguished. A novel combination of two channel oblique illumination and z-stack imaging process increased depth of field and optimized contrast, which has a potential to be further applied in the field of neuroscience, hard tissue biology, and analysis of small organic structures such as ear ossicles and zebra fish teeth.