• Title/Summary/Keyword: non-periodic B-spline function

Search Result 3, Processing Time 0.018 seconds

A non-symmetric non-periodic B3-spline finite strip method

  • Kim, Kyeong-Ho;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.247-262
    • /
    • 2004
  • In the earlier application of the spline finite strip method(FSM), the uniform B3-spline functions were used in the longitudinal direction while the conventional interpolation functions were used in the transverse direction to construct the displacement filed in a strip. To overcome the shortcoming of the uniform B3-spline, non-periodic B-spline was developed as the displacement function. The use of non-periodic B3-spline function requires no tangential vectors at both ends to interpolate the geometry of shell and the Kronecker delta property is also satisfied at the end boundaries. Recently, non-periodic spline FSM which was modified to have a multiple knots at the boundary was developed for the shell analysis and applied to the analysis of bridges. In the formulation of a non-symmetric spline finite strip method, the concepts of non-periodic B3-spline and a stress-resultant finite strip with drilling degrees of freedom for a shell are used. The introduction of non-symmetrically spaced knots in the longitudinal direction allows the selective local refinement to improve the accuracy of solution at the connections or at the location of concentrated load. A number of numerical tests were performed to prove the accuracy and efficiency of the present study.

Assumed strain finite strip method using the non-periodic B-spline

  • Hong, Hyun-Seok;Kim, Kyeong-Ho;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.671-690
    • /
    • 2004
  • An assumed strain finite strip method(FSM) using the non-periodic B-spline for a shell is presented. In the present method, the shape function based on the non-periodic B-splines satisfies the Kronecker delta properties at the boundaries and allows to introduce interior supports in much the same way as in a conventional finite element formulation. In the formulation for a shell, the geometry of the shell is defined by non-periodic B3-splines without any tangential vectors at the ends and the penalty function method is used to incorporate the drilling degrees of freedom. In this study, new assumed strain fields using the non-periodic B-spline function are proposed to overcome the locking problems. The strip formulated in this way does not posses any spurious zero energy modes. The versatility and accuracy of the new approach are demonstrated through a series of numerical examples.

Finite strip analysis of multi-span box girder bridges by using non-periodic B-spline interpolation

  • Choi, C.K.;Hong, H.S.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.3
    • /
    • pp.313-328
    • /
    • 2001
  • A multi-span bridge has the peak value of resultant girder moment or membrane stress at the interior support. In this paper, the spline finite strip method (FSM) is modified to obtain the more appropriate solution at the interior support where the peak values of solution exist. The modification has been achieved by expressing the shape function with non-periodic B-splines which have multiple knots at the boundary. The modified B-splines have the useful feature for interpolating the curve with sudden change in curvature. Moreover, the modified spline FSM is very efficient in analyzing multi-span box girder bridges, since a bridge can be modeled by an assembly of strips extended along the entire bridge length. Numerical examples of the bridge analysis have been performed to verify the efficiency and accuracy of the new spline FSM.