• Title/Summary/Keyword: non-linear structural analysis

Search Result 601, Processing Time 0.025 seconds

Analysis of impact response and damage in laminated composite cylindrical shells undergoing large deformations

  • Kumar, Surendra
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.349-364
    • /
    • 2010
  • The impact behaviour and the impact-induced damage in laminated composite cylindrical shell subjected to transverse impact by a foreign object are studied using three-dimensional non-linear transient dynamic finite element formulation. A layered version of 20 noded hexahedral element incorporating geometrical non-linearity is developed based on total Langragian approach. Non-linear system of equations resulting from non-linear strain displacement relation and non-linear contact loading are solved using Newton-Raphson incremental-iterative method. Some example problems of graphite/epoxy cylindrical shell panels are considered with variation of impactor and laminate parameters and influence of geometrical non-linear effect on the impact response and the resulting damage is investigated.

A Strength Analysis of a Hull Girder in a Rough Sea

  • Kim, Sa-Soo;Shin, Ku-Kyun;Son, Sung-Wan
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.79-105
    • /
    • 1994
  • A ship in waves is suffered from the various wave loads that comes from its motion throughout its life. Because these loads are dynamic, the analysis of a ship structure must be considered as the dynamic problem precisely. In the rationally-based design, the dynamic structural analysis is carried out using dynamic wave loads provided from the results of the ship motion calculation as a rigid body. This method is based on the linear theory assumed low wave height and small amplitude of motion. But at the rough sea condition, high wave height, compared with ship's depth, induce the large ship motion, so the ship section configuration under waterline is rapidly changed at each time. This results in a non-linear problem. Considering above situation in this paper, a strength analysis method is introduced for the hull girder among waves considering non-linear hydrodynamic forces. This paper evaluates the overall or primary level of the ship structural dynamic loading and dynamic response provided from the non-linear wave forces, and bottom flare impact forces by momentum slamming theory. For numerical calculation a ship is idealized as a hollow thin-walled box beam using thin walled beam theory and the finite element method is used. This method applied to a 40,000 ton double hull tanker and attention is paid to the influence of the response of the ship's speed, wave length and wave height compared with the linear strip theory.

  • PDF

A Study on Subjective Assessment of Knit Fabric by ANFIS

  • Ju Jeong-Ah;Ryu Hyo-Seon
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.203-212
    • /
    • 2006
  • The purpose of this study was to examine the effects of the structural properties of plain knit fabrics on the subjective perception of textures, sensibilities, and preference among consumers. This study, then, aimed to provide useful information with respect to planning and designing knitted fabrics by predicting the subjective characteristics analyzed according to their structural properties. For this purpose, we employed statistical analysis tools, such as factor and regression analysis and an adaptive-network-based fuzzy inference system(ANFIS), thereby combining the merits of fuzzy and neural networks and presupposing a non-linear relationship. Through factor analysis, we also categorized the subjective textures into 'roughness', 'softness', 'bulkiness' and 'stretch-ability' with R2=70.32%: and categorized the sensibilities into 'Stable/Neat', 'Natural/Comfortable' and 'Feminine/Elegant' with R2=68.12%. We analyzed subjective textures, sensibilities, and preference with ANFIS, assuming non-linear relationships; consequently, we were able to generate three or four fuzzy rules using wool/rayon fiber content and loop length as input data. The textures of roughness and softness exhibited a linear relationship, but other subjective characteristics demonstrated a non-linear input-output relationship. Compared with linear regression analysis, the ANFIS exhibited had higher predictive power with respect to predicting subjective characteristics.

Non-linear performance analysis of existing and concentric braced steel structures

  • Erdem, R. Tugrul
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.59-74
    • /
    • 2015
  • Since there are several places located in active seismic zones in the world, serious damages and losses have happened due to major scaled earthquakes. Especially, structures having different irregularities have been severely damaged or collapsed during these seismic events. Behavior of existing structures under several loading conditions is not completely determined due to some uncertainties. This situation reveals the importance of design and analysis of structures under seismic effects. Several non-linear static procedures have been developed in recent years. Determination of the seismic safety of the existing structures and strengthening techniques are significant civil engineering problems Non-linear methods are defined in codes to determine the performance levels of structures more accurately. However, displacement based ones give more realistic results. These methods provide more reliable evaluation possibilities for existing structures with developing computer technology. In this study, non-linear performance analysis of existing and strengthened steel structures by X shaped bracing members with 3, 5 and 7 stories which have soft story irregularity is performed according to FEMA-356 and Turkish Earthquake Code-2007. Damage ratios of the structural members and global performance levels are determined as well as modal properties and story drift ratios after non-linear finite elements analysis for each structure.

The study on the possibility of performance analysis for the compressive member using the numerical method (수치해석법을 활용한 압축부재 성능 해석의 가능성에 대한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.1
    • /
    • pp.26-39
    • /
    • 2010
  • This is a leading study to replace the structural analysis methodology on the specific traditional joint by a numerical analysis. Tests were carried out to test the compressive methodologies with the numerical results. The Japanese larch was used as a sample. The Orthotropic property of wood was specifically considered for the finite element numerical analysis. Linear numerical analysis and non-linear numerical analysis for the BEAM element and the two SOLID elements of ANSYS were used to analyze the compressive performance. In addition, more finely divided elements were used to raise the accuracy of the numerical result. Finally, the statistically significant differences were tested between that of the analytical and numerical results. It could be concluded that the SOLID 64 element shows the most optimum result when the non-linear analysis with the more finely divided element was used. However, finely dividing of the element is a considerable time consuming process, and it is quite difficult to raise the accuracy of the non-linear numerical analysis. Therefore, if considering the vertical displacement to be of the only interest, the BEAM element is more efficient than the SOLID element because the BEAM element is reflected as a simple line, which is less time consuming and difficult in dividing the elements. But, the BEAM element cannot accurately model the knot as a strength defect factor which is an important property in the orthotropic property of wood. Therefore, the SOLID element should be used to model the strength defect factor, knot, as it can be efficiently applied on the structural size flexure member which could be more strongly effected by the knot. In addition, it is useful at times when the failure types of members are to be more closely investigated, as the SOLID element is able to examine the local stress distribution of the member. The conclusion drawn by this study is of the good concordance between analytical results and numerical results of compressive wood members, but how orthotropic properties should only be considered. The numerical analysis on the specific Korean traditional joints will be based on the current study results.

  • PDF

Collapse behaviour of three-dimensional brick-block systems using non-linear programming

  • Baggio, Carlo;Trovalusci, Patrizia
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.181-195
    • /
    • 2000
  • A two-step procedure for the application of non linear constrained programming to the limit analysis of rigid brick-block systems with no-tension and frictional interface is implemented and applied to various masonry structures. In the first step, a linear problem of programming, obtained by applying the upper bound theorem of limit analysis to systems of blocks interacting through no-tension and dilatant interfaces, is solved. The solution of this linear program is then employed as initial guess for a non linear and non convex problem of programming, obtained applying both the 'mechanism' and the 'equilibrium' approaches to the same block system with no-tension and frictional interfaces. The optimiser used is based on the sequential quadratic programming. The gradients of the constraints required are provided directly in symbolic form. In this way the program easily converges to the optimal solution even for systems with many degrees of freedom. Various numerical analyses showed that the procedure allows a reliable investigation of the ultimate behaviour of jointed structures, such as stone masonry structures, under statical load conditions.

A total strain-based hysteretic material model for reinforced concrete structures: theory and verifications

  • Yun, Gun-Jin;Harmon, Thomas G.;Dyke, Shirley J.;So, Migeum
    • Computers and Concrete
    • /
    • v.5 no.3
    • /
    • pp.217-241
    • /
    • 2008
  • In this paper, a total strain-based hysteretic material model based on MCFT is proposed for non-linear finite element analysis of reinforced concrete structures. Although many concrete models have been proposed for simulating behavior of structures under cyclic loading conditions, accurate simulations remain challenging due to uncertainties in materials, pitfalls of crude assumptions of existing models, and limited understanding of failure mechanisms. The proposed model is equipped with a fully generalized hysteresis rule and is formulated for 2D plane stress non-linear finite element analysis. The proposed model has been formulated in a tangent stiffness-based finite element scheme so that it can be used for most general finite element analysis packages. Moreover, it eliminates the need to check that tensile stresses can be transmitted across a crack. The tension stiffening model is a function of the bar orientation and any orientation can be accommodated. The proposed model has been verified with a series of experimental results of 2D RC planar panels. This study also demonstrates how parameters of the proposed model associated with cyclic damage modeling influences the pinched cyclic shear behavior.

Seismic assessment of a R/C strategic existing building

  • Mehani, Youcef;Kibboua, Abderrahmane
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.617-634
    • /
    • 2007
  • Algeria is a country with a high seismic activity. During the last decade, many destructive earthquakes occurred, particularly in the northern part, causing enormous losses in human lives, buildings and equipments. In order to reduce this risk in the capital and avoid serious damages to the strategic existing buildings, the government decided to invest into seismic upgrade, strengthening and retrofitting of these buildings. In doing so, seismic vulnerability study of this category of buildings has been considered. Structural analysis is performed on the basis of site investigation (inspection of the building, collecting data, materials, general conditions of the building, etc), and existing drawings (architectural plans, structural design, etc). The aim of these seismic vulnerability studies is to develop guidelines and a methodology for rehabilitation of existing buildings. This paper will provide insight to the vulnerability assessment and strengthening of the telecommunication centre, according to the new code RPA 99/version 2003. Both, static equivalent method and non linear dynamic analysis are performed in this study.

Non-linear Finite Element Analysis of Steel Members Under Very-Low-Cycles of Loading (극저사이클 하중하에서 강구조 부재의 비선형 유한요소해석)

  • 박연수
    • Computational Structural Engineering
    • /
    • v.7 no.2
    • /
    • pp.61-67
    • /
    • 1994
  • The objective of this numerical analysis is to trace the hysteretic behavior of steel angles under very-low-cycle loading test, especially the history and cumulative state of local stress-strain at their critical parts. The computer model is based on a three-dimensional, non-linear analysis by using the finite element program, MSC/NASTRAN, which includes the effects of the material and geometric non-linearities. The analysis was performed as two stage procedures, namely Analysis I and II. The overall behavior from this analysis showed good agreement with the experiment.

  • PDF

A new hierarchic degenerated shell element for geometrically non-linear analysis of composite laminated square and skew plates

  • Woo, Kwang-Sung;Park, Jin-Hwan;Hong, Chong-Hyun
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.751-766
    • /
    • 2004
  • This paper extends the use of the hierarchic degenerated shell element to geometric non-linear analysis of composite laminated skew plates by the p-version of the finite element method. For the geometric non-linear analysis, the total Lagrangian formulation is adopted with moderately large displacement and small strain being accounted for in the sense of von Karman hypothesis. The present model is based on equivalent-single layer laminate theory with the first order shear deformation including a shear correction factor of 5/6. The integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. A wide variety of linear and non-linear results obtained by the p-version finite element model are presented for the laminated skew plates as well as laminated square plates. A numerical analysis is made to illustrate the influence of the geometric non-linear effect on the transverse deflections and the stresses with respect to width/depth ratio (a/h), skew angle (${\beta}$), and stacking sequence of layers. The present results are in good agreement with the results in literatures.