• Title/Summary/Keyword: non-linear static analysis

Search Result 191, Processing Time 0.023 seconds

Ductility-based design approach of tall buildings under wind loads

  • Elezaby, Fouad;Damatty, Ashraf El
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • The wind design of buildings is typically based on strength provisions under ultimate loads. This is unlike the ductility-based approach used in seismic design, which allows inelastic actions to take place in the structure under extreme seismic events. This research investigates the application of a similar concept in wind engineering. In seismic design, the elastic forces resulting from an extreme event of high return period are reduced by a load reduction factor chosen by the designer and accordingly a certain ductility capacity needs to be achieved by the structure. Two reasons have triggered the investigation of this ductility-based concept under wind loads. Firstly, there is a trend in the design codes to increase the return period used in wind design approaching the large return period used in seismic design. Secondly, the structure always possesses a certain level of ductility that the wind design does not benefit from. Many technical issues arise when applying a ductility-based approach under wind loads. The use of reduced design loads will lead to the design of a more flexible structure with larger natural periods. While this might be beneficial for seismic response, it is not necessarily the case for the wind response, where increasing the flexibility is expected to increase the fluctuating response. This particular issue is examined by considering a case study of a sixty-five-story high-rise building previously tested at the Boundary Layer Wind Tunnel Laboratory at the University of Western Ontario using a pressure model. A three-dimensional finite element model is developed for the building. The wind pressures from the tested rigid model are applied to the finite element model and a time history dynamic analysis is conducted. The time history variation of the straining actions on various structure elements of the building are evaluated and decomposed into mean, background and fluctuating components. A reduction factor is applied to the fluctuating components and a modified time history response of the straining actions is calculated. The building components are redesigned under this set of reduced straining actions and its fundamental period is then evaluated. A new set of loads is calculated based on the modified period and is compared to the set of loads associated with the original structure. This is followed by non-linear static pushover analysis conducted individually on each shear wall module after redesigning these walls. The ductility demand of shear walls with reduced cross sections is assessed to justify the application of the load reduction factor "R".

A Study on the Fliker Effect of SVC in Electric Arc Furnace Loads (전기로 부하에서 SVC의 플리커 효과에 관한 연구)

  • Kim, Kyung-Chul;Jin, Seong-Eun;Lee, Il-Moo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.8
    • /
    • pp.48-53
    • /
    • 2006
  • An electric arc furnace being used in the steel industry is a time-varying non-linear load causing voltage fluctuations to the power system. Flicker can be defined as the effect produced on the human visual perception by a changing emission of light lamps subjected to magnitude fluctuations of their supply voltage. The level of flicker depends on the amplitude, frequency and duration of the voltage fluctuations. In this paper, the voltage fluctuation problem in an 154[kV] system due to the electric arc furnace loads is investigated and the analysis results of the static var compensator application for the voltage flicker mitigation are presented and evaluated by the IEC 61000-3-7.

In-plane Natural Vibration Analysis of a Rotating Annular Disk (회전하는 환상 디스크의 면내 고유진동 해석)

  • Song, Seung-Gwan;Kwak, Dong-Hee;Kim, Chang-Boo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.2
    • /
    • pp.208-216
    • /
    • 2009
  • In this paper, we present the equations of motion by which the natural vibration of a rotating annular disk can be analyzed accurately. These equations are derived from the theory of finite deformation and the principle of virtual work. The radial displacements of annular disk at the steady state where the disk is rotating at a constant angular velocity are determined by non-linear static equations formulated with 1-dimensional finite elements in radial direction. The linearlized equations of the in-plane vibrations at the disturbed state are also formulated with 1-dimensional finite elements in radial direction along the number of nodal diameters. They are expressed as in functions of the radial displacements at the steady state and the disturbed displacements about the steady state. In-plane static deformation modes of an annular disk are used as the displacement functions for the interpolation functions of the 1-dimensional finite elements. The natural vibrations of an annular disk with different boundary conditions are analyzed by using the presented model and the 3-dimensional finite element model to verify accuracy of the presented equations of motion. Its results are compared and discussed.

Structural and Vibration Analysis of Large Windturbine Rotor Considering the Rotational and Aero Load Effect (회전 및 풍하중 가진 효과를 고려한 대형 풍력발전 로터의 구조 및 진동해석)

  • Kim, Dong-Man;Kim, Dong-Hyun;Park, Kang-Kyun;Kim, Yu-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.270-275
    • /
    • 2008
  • In this study, computer applied engineering (CAE) techniques are full? used to conduct structural and dynamic analyses of a huge composite rotor blade. Computational fluid dynamics is used to predict aerodynamic load of the rotating wind-turbine blade model. Static and dynamic structural analyses are conducted based on the non-linear finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results for aerodynamic load, dynamic analyses are presented and characteristics of structural behaviors are investigated herein.

  • PDF

Structural robustness of RC frame buildings under threat-independent damage scenarios

  • Ventura, Antonio;De Biagi, Valerio;Chiaia, Bernardino
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.689-698
    • /
    • 2018
  • This study focuses on a novel procedure for the robustness assessment of reinforced concrete (RC) framed structures under threat-independent damage scenarios. The procedure is derived from coupled dynamic and non-linear static analyses. Two robustness indicators are defined and the method is applied to two RC frame buildings. The first building was designed for gravity load and earthquake resistance in accordance with Eurocode 8. The second was designed according to the tie force (TF) method, one of the design quantitative procedures for enhancing resistance to progressive collapse. In addition, in order to demonstrate the suitability and applicability of the TF method, the structural robustness and resistance to progressive collapse of the two designs is compared.

A Study on Damage-Assessment of RC Large Cooling Tower Shells (RC 대형 냉각탑 셀의 손상추정에 관한 연구)

  • Noh, Sam-Young
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.279-286
    • /
    • 2004
  • An accumulated crack damage which propagates progressively with time was frequently observed on several engineering structures, This paper numerically demonstrates this damage process on large cooling tower shells under thermal and wind loads. Damage states under varying loads are investigated and the influence of this progressive damage process on the life-cycle of cooling towers discussed. The paper presents briefly some fundamentals of the geometrically and physically non-linear numerical analysis employed for reinforced concrete, especially concerning the models used for concrete, steel reinforcement and the bond between them. As a numerical example an existing cooling tower with noticeable meridian crack damage is analysed. The existing damage state of the cooling tower is determined by quasi-static analyses for temperature, hygric and cyclic wind leading. The change in the dynamical behaviour of the structure as mirrored in its natural frequencies and mode shapes is presented and discussed. Finally, the example shows that such damage processes develop progressively over the life-time of the structures.

  • PDF

Development of Dynamic Photoelastic Experimental Hybrid Method for Propagating Cracks in Orthotropic Material (직교이방성체내의 진전 균열에 대한 동적 광탄성 실험 Hybrid 법 개발)

  • Shin, Dong-Chul;Hawong, Jai-Sug;Sung, Jong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1273-1280
    • /
    • 2003
  • In this paper, transparent dynamic photoelastic experimental hybrid method for propagating cracks in orthotropic material was developed. Using transparent dynamic photoelastic experimental hybrid method, we can obtain stress intensity factor and separate the stress components from only isochromatic fringe patterns without using isoclinics. When crack is propagated with constant velocity, the contours of stress components in the vicinity of crack tip in orthotropic material are similar to those of isotropic material or orthotropic material with stationary crack under the static load. Dynamic stress intensity factors are decreased as crack growths. It was certified that the dynamic photoelastic experimental hybrid method was very useful for the analysis of the dynamic fracture mechanics.

Analysis into the configuration and tension of the towing cable of a side-scan sonar (사이드스캔 소나 예인케이블에 걸리는 장력 및 형상 해석)

  • 박한일;류창혁
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.4 no.2
    • /
    • pp.63-68
    • /
    • 1998
  • This study is aimed to predict the configuration and tension of a towing cable of a side-scan sonar which plays an important role in developing ocean resources. The governing equations of 3-D static equilibrium equations for a flexible cable are derived and solved using a finite difference method. The forces considered in this paper are effective weights, drag forces due to currents and ship moving, and the tension at both ends of the towing cable. The governing equations are non-linear, so an iteration method is applied to solve the equation. A case study is carried out for several different conditions. The result will be useful for predicting the location of a side-scan sonar and to design the towing system.

  • PDF

DC-Link Voltage Control of Distribution Static Compensator using Ripple Voltage Extraction (맥동 전압 추출을 통한 배전용 정지형 보상기의 직류링크 전압제어)

  • Kim, Ho-Yeol;Choi, Jong-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.8-13
    • /
    • 2012
  • DSTATCOM is active filter that reduces nonlinear and unbalanced currents. Researches about DSTATCOM are mainly divided two parts, one is the reference value calculation of compensation current depending on the calculation of the load-side average active power and dc-link capacitor average voltage, the other part is actual current control depending on the reference value of compensation current. This paper proposes a calculation of dc-link capacitor average voltage ripple voltage extraction instead of conventional method using LPF. The utility of the proposed algorithm is verified through the theoretical analysis and the experiment under unbalance loads and non-linear load.

Buckling analysis of partially embedded pile in elastic soil using differential transform method

  • Catal, Seval;Catal, Hikmet Huseyin
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.247-268
    • /
    • 2006
  • The parts of pile, above the soil and embedded in the soil are called the first region and second region, respectively. The forth order differential equations of both region for critical buckling load of partially embedded pile with shear deformation are obtained using the small-displacement theory and Winkler hypothesis. It is assumed that the behavior of material of the pile is linear-elastic and that axial force along the pile length and modulus of subgrade reaction for the second region to be constant. Shear effect is included in the differential equations by considering shear deformation in the second derivative of the elastic curve function. Critical buckling loads of the pile are calculated for by differential transform method (DTM) and analytical method, results are given in tables and variation of critical buckling loads corresponding to relative stiffness of the pile are presented in graphs.