• Title/Summary/Keyword: non-linear least squares

Search Result 81, Processing Time 0.031 seconds

Design of sliding-type base isolators by the concept of equivalent damping

  • Yang, Yeong-Bin;Chen, Yi-Chang
    • Structural Engineering and Mechanics
    • /
    • v.8 no.3
    • /
    • pp.299-310
    • /
    • 1999
  • One problem with base isolators of the sliding type is that their dynamic responses are nonlinear, which cannot be solved in an easy manner, as distinction must be made between the sliding and non-sliding phases. The lack of a simple method for analyzing structures installed with base isolators is one of the obstacles encountered in application of these devices. As an initial effort toward simplification of the analysis procedure for base-isolated structures, an approach will be proposed in this paper for computing the equivalent damping for the resilient-friction base isolators (R-FBI), based on the condition that the sum of the least squares of errors of the linearized response with reference to the original nonlinear one is a minimum. With the aid of equivalent damping, the original nonlinear system can be replaced by a linear one, which can then be solved by methods readily available. In this paper, equivalent damping curves are established for all ranges of the parameters that characterize the R-FBI for some design spectra.

S-Domain Equivalent System for Electromagnetic Transient Studies PART II : Frequency Dependent AC System Equivalent (전자기 과도현상 해석을 위한 S 영역 등가시스템 PART II: 주파수 의존 교류 시스템 등가)

  • Chung Hyeng-Hwan;Wang Yong-Peel
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.4
    • /
    • pp.165-171
    • /
    • 2005
  • Electromagnetic transient simulation can be used to model complex non-linearities that very difficult to represent adequately in the frequency domain. This problem is greatly reduced with the use of frequency dependent network equivalents for the linear part of the system. S-domain rational function fitting techniques for representing frequency dependent equivalents have been developed using Least Squares Fitting(LSF). However it does not suffer the implementation error that exited in this work as it ignored the instantaneous term. This paper presents the formulation for developing 2 port Frequency Dependent AC System Equivalent(FDACSE) with the instantaneous term in S-domain and illustrates its use. This 2 port FDNE have been applied to the New Zealand AC system. The electromagnetic transient package PSCAD/EMTDC is used to assess the transient response of the 2 port (FDACSE) developed with Norton Equivalent network. The study results have indicated the robustness and accuracy of 2 port FDACSE for electromagnetic transient studies.

Development of A New Patch-Based Stereo Matching Algorithm for Extraction of Digiral Elevation Model from Satellite Imagery (위성영상으로부터 수치표고모형 추출을 위한 새로운 정합구역의 비선형 최소자승 영상정합 알고리즘 개발)

  • 김태정;이흥규
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.2
    • /
    • pp.121-132
    • /
    • 1997
  • This paper describes the development of a stereo matching algorithm for extracting Digital Elevation Model(DEM) from satellite images. This matching algorithm is based on a non-linear least squares correlation estimation but has improved matching speed. The algorithm consists of three steps: matching execution, matching control and matching optimization. Each is described. The performance of the presented algorithm is quantitatively analyzed with experiments on matching probability, matching speed and matching convergence radius.

CHALLENGING APPLICATIONS FOR FT-NIR SPECTROSCOPY

  • Goode, Jon G.;Londhe, Sameer;Dejesus, Steve;Wang, Qian
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.4112-4112
    • /
    • 2001
  • The feasibility of NIR spectroscopy as a quick and nondestructive method for quality control of uniformity of coating thickness of pharmaceutical tablets was investigated. Near infrared spectra of a set of pharmaceutical tablets with varying coating thickness were measured with a diffuse reflectance fiber optic probe connected to a Broker IFS 28/N FT-NIR spectrometer. The challenging issues encountered in this study included: 1. The similarity of the formulation of the core and coating materials, 2. The lack of sufficient calibration samples and 3. The non-linear relationship between the NIR spectral intensity and coating: thickness. A peak at 7184 $cm^{-1}$ was identified that differed for the coating material and the core material when M spectra were collected at 2 $cm^{-1}$ resolution (0.4 nm at 7184 $cm^{-1}$). The study showed that the coating thickness can be analyzed by polynomial fitting of the peak area of the selected peak, while least squares calibration of the same data failed due to the lack of availability of sufficient calibration samples. Samples of coal powder and solid pieces of coal were analyzed by FT-NIR diffuse reflectance spectroscopy with the goal of predicting their ash content, percentage of volatile components, and energy content. The measurements were performed on a Broker Vector 22N spectrometer with a fiber optic probe. A partial least squares model was constructed for each of the parameters of interest for solid and powdered sample forms separately. Calibration models varied in size from 4 to 10 PLS ranks. Correlation coefficients for these models ranged from 86.6 to 95.0%, with root-mean-square errors of cross validation comparable to the corresponding reference measurement methods. The use of FT-NIR diffuse reflectance measurement techniques was found to be a significant improvement over existing measurement methodologies in terms of speed and ease of use, while maintaining the desired accuracy for all parameters and sample forms.(Figure Omitted).

  • PDF

A Parameter Estimation Method using Nonlinear Least Squares (비선형 최소제곱법을 이용한 모수추정 방법론)

  • Oh, Suna;Song, Jongwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.431-440
    • /
    • 2013
  • We consider the problem of estimating the parameters of heavy tailed distributions. In general, maximum likelihood estimation(MLE) is the most preferred method of parameter estimation because it has good properties such as asymptotic consistency, normality and efficiency. However, MLE is not always the best solution because MLE is unstable or does not exist in some cases. This paper proposes another parameter estimation method, non-linear least squares(NLS) and compares its performance to MLE. The NLS estimator is achieved by minimizing sum of squared difference between empirical cumulative distribution function(CDF) and a theoretical distribution function. In this article, we compare the NLS method to MLE using simulated data from heavy tailed distributions. The NLS method is shown to perform better than MLE in Burr distribution when the sample size is small; in addition, it performs well in a Frechet distribution.

Accuracy and robustness of hysteresis loop analysis in the identification and monitoring of plastic stiffness for highly nonlinear pinching structures

  • Hamish Tomlinson;Geoffrey W. Rodgers;Chao Xu;Virginie Avot;Cong Zhou;J. Geoffrey Chase
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.101-111
    • /
    • 2023
  • Structural health monitoring (SHM) covers a range of damage detection strategies for buildings. In real-time, SHM provides a basis for rapid decision making to optimise the speed and economic efficiency of post-event response. Previous work introduced an SHM method based on identifying structural nonlinear hysteretic parameters and their evolution from structural force-deformation hysteresis loops in real-time. This research extends and generalises this method to investigate the impact of a wide range of flag-shaped or pinching shape nonlinear hysteretic response and its impact on the SHM accuracy. A particular focus is plastic stiffness (Kp), where accurate identification of this parameter enables accurate identification of net and total plastic deformation and plastic energy dissipated, all of which are directly related to damage and infrequently assessed in SHM. A sensitivity study using a realistic seismic case study with known ground truth values investigates the impact of hysteresis loop shape, as well as added noise, on SHM accuracy using a suite of 20 ground motions from the PEER database. Monte Carlo analysis over 22,000 simulations with different hysteresis loops and added noise resulted in absolute percentage identification error (median, (IQR)) in Kp of 1.88% (0.79, 4.94)%. Errors were larger where five events (Earthquakes #1, 6, 9, 14) have very large errors over 100% for resulted Kp as an almost entirely linear response yielded only negligible plastic response, increasing identification error. The sensitivity analysis shows accuracy is reduces to within 3% when plastic drift is induced. This method shows clear potential to provide accurate, real-time metrics of non-linear stiffness and deformation to assist rapid damage assessment and decision making, utilising algorithms significantly simpler than previous non-linear structural model-based parameter identification SHM methods.

Performance Comparison of the Batch Filter Based on the Unscented Transformation and Other Batch Filters for Satellite Orbit Determination (인공위성 궤도결정을 위한 Unscented 변환 기반의 배치필터와 다른 배치필터들과의 성능비교)

  • Park, Eun-Seo;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.75-88
    • /
    • 2009
  • The main purpose of the current research is to introduce the alternative algorithm of the non-recursive batch filter based on the unscented transformation in which the linearization process is unnecessary. The presented algorithm is applied to the orbit determination of a low earth orbiting satellite and compared its results with those of the well-known Bayesian batch least squares estimation and the iterative UKF smoother (IUKS). The system dynamic equations consist of the Earth's geo-potential, the atmospheric drag, solar radiation pressure and the lunar/solar gravitational perturbations. The range, azimuth and elevation angles of the satellite measured from ground stations are used for orbit determination. The characteristics of the non recursive unscented batch filter are analyzed for various aspects, including accuracy of the determined orbit, sensitivity to the initial uncertainty, measurement noise and stability performance in a realistic dynamic system and measurement model. As a result, under large non-linear conditions, the presented non-recursive batch filter yields more accurate results than the other batch filters about 5% for initial uncertainty test and 12% for measurement noise test. Moreover, the presented filter exhibits better convergence reliability than the Bayesian least squares. Hence, it is concluded that the non-recursive batch filter based on the unscented transformation is effectively applicable for highly nonlinear batch estimation problems.

Prediction of Failure Time of Tunnel Applying the Curve Fitting Techniques (곡선적합기법을 이용한 터널의 파괴시간 예측)

  • Yoon, Yong-Kyun;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.97-104
    • /
    • 2010
  • The materials failure relation $\ddot{\Omega}=A{(\dot{\Omega})}^\alpha$ where $\Omega$ is a measurable quantity such as displacement and the dot superscript is the time derivative, may be used to analyze the accelerating creep of materials. Coefficients, A and $\alpha$, are determined by fitting given data sets. In this study, it is tried to predict the failure time of tunnel using the materials failure relation. Four fitting techniques of applying the materials failure relation are attempted to forecast a failure time. Log velocity versus log acceleration technique, log time versus log velocity technique, inverse velocity technique are based on the linear least squares fits and non-linear least squares technique utilizes the Levenberg-Marquardt algorithm. Since the log velocity versus log acceleration technique utilizes a logarithmic representation of the materials failure relation, it indicates the suitability of the materials failure relation applied to predict a failure time of tunnel. A linear correlation between log velocity and log acceleration appears satisfactory(R=0.84) and this represents that the materials failure relation is a suitable model for predicting a failure time of tunnel. Through comparing the real failure time of tunnel with the predicted failure times from four curve fittings, it is shown that the log time versus log velocity technique results in the best prediction.

Improvement of Rating Curve Fitting Considering Variance Function with Pseudo-likelihood Estimation (의사우도추정법에 의한 분산함수를 고려한 수위-유량 관계 곡선 산정법 개선)

  • Lee, Woo-Seok;Kim, Sang-Ug;Chung, Eun-Sung;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.8
    • /
    • pp.807-823
    • /
    • 2008
  • This paper presents a technique for estimating discharge rating curve parameters. In typical practical applications, the original non-linear rating curve is transformed into a simple linear regression model by log-transforming the measurement without examining the effect of log transformation. The model of pseudo-likelihood estimation is developed in this study to deal with heteroscedasticity of residuals in the original non-linear model. The parameters of rating curves and variance functions of errors are simultaneously estimated by the pseudo-likelihood estimation(P-LE) method. Simulated annealing, a global optimization technique, is adapted to minimize the log likelihood of the weighted residuals. The P-LE model was then applied to a hypothetical site where stage-discharge data were generated by incorporating various errors. Results of the P-LE model show reduced error values and narrower confidence intervals than those of the common log-transform linear least squares(LT-LR) model. Also, the limit of water levels for segmentation of discharge rating curve is estimated in the process of P-LE using the Heaviside function. Finally, model performance of the conventional log-transformed linear regression and the developed model, P-LE are computed and compared. After statistical simulation, the developed method is then applied to the real data sets from 5 gauge stations in the Geum River basin. It can be suggested that this developed strategy is applied to real sites to successfully determine weights taking into account error distributions from the observed discharge data.

A Robust Digital Pre-Distortion Technique in Saturation Region for Non-linear Power Amplifier (비선형 전력 증폭기의 포화영역에서 강인한 디지털 전치왜곡 기법)

  • Hong, Soon-Il;Jeong, Eui-Rim
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.681-684
    • /
    • 2015
  • Power amplifier is an essential component for transmitting signals to a remote receiver in wireless communication systems. Power amplifier is a non-linear device in general, and the nonlinear distortion becomes severer as the output power increases. The nonlinearity results in spectral regrowth, which leads to adjacent channel interference, and decreases the transmit signal quality. To linearize power amplifiers, many techniques have been developed so far. Among the techniques, digital pre-distortion is known as the most cost and performance effective technique. However, the linearization performance falls down abruptly when the power amplifier operates in its saturation region. This is because of the severe nonlinearity. To relieve this problem, this paper proposes a new adaptive predistortion technique. The proposed technique controls the adaptive algorithm based on the power amplifier input level. Specifically, for small signals, the adaptive predistortion algorithm works normally. On the contrary, for large signals, the adaptive algorithm stops until small signals occur again. By doing this, wrong coefficient update by severe nonlinearity can be avoided. Computer simulation results show that the proposed method can improve the linearization performance compared with the conventional digital predistortion algorithms.

  • PDF