• Title/Summary/Keyword: non-linear activation

Search Result 53, Processing Time 0.025 seconds

Energy effects on MHD flow of Eyring's nanofluid containing motile microorganism

  • Sharif, Humaira;Naeem, Muhammad N.;Khadimallah, Mohamed A.;Ayed, Hamdi;Bouzgarrou, Souhail Mohamed;Al Naim, Abdullah F.;Hussain, Sajjad;Hussain, Muzamal;Iqbal, Zafar;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.357-367
    • /
    • 2020
  • The impulse of this paper is to examine the influence of unsteady flow comprising of Eyring-Powell nanofluid over a stretched surface. This work aims to explore efficient transfer of heat in Eyring-Powell nanofluid with bio-convection. Nanofluids possess significant features that have aroused various investigators because of their utilization in industrial and nanotechnology. The influence of including motile microorganism is to stabilize the nanoparticle suspensions develop by the mixed influence of magnetic field and buoyancy force. This research paper reveals the detailed information about the linearly compressed Magnetohydrodynamics boundary layer flux of two dimensional Eyring-Powell nanofluid through disposed surface area due to the existence of microorganism with inclusion the influence of non- linear thermal radiation, energy activation and bio-convection. The liquid is likely to allow conduction and thickness of the liquid is supposed to show variation exponentially. By using appropriate similarity type transforms, the nonlinear PDE's are converted into dimensionless ODE's. The results of ODE's are finally concluded by employing (HAM) Homotopy Analysis approach. The influence of relevant parameters on concentration, temperature, velocity and motile microorganism density are studied by the use of graphs and tables. We acquire skin friction, local Nusselt and motil microorganism number for various parameters.

Autoignition Characteristics of Limonene - Expanded Polystyrene Mixture (Limonene - Expanded Polystyrene 혼합물의 자연발화 특성)

  • 송영호;하동명;정국삼
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • In the reutilization process using limonene, the organic solvent to reduce volume of EPS, the AIT was measured with the variation of concentration and volume of mixture, in order to present the fund-mental data on the fire hazard assessment of limonene - EPS mixture at storage and handling. And ignition zone was compared with non-ignition zone. The equation related to AIT, activation energy and ignition delay time, used by the most scientific basis for predicting AIT values, was suggested using linear regression analysis as ln t = 0.704/T-5.819. And the equation related to concentration of mixture and AIT was also suggested to predict ignition hazard of combustible mixture using nonlinear regression analysis as $T_m/=248.32+69.27X+172.60X^2$. It enabled to predict ignition temperature according to variation of ignition delay time and concentration of mixture by the suggested equations.

Prediction of a winner in PGA tournament using neural network (신경망을 이용한 우승자 예측모형)

  • Min, Dae-Kee;Hyun, Moo-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1119-1127
    • /
    • 2009
  • In PGA golf, total prize money and average score are good response variable related to golf skills such as driving distance, green in regulation and putts per green in regulation. But it's not easy to predict the winner of coming tournament. Thus I applied Neural Networks which has pretty good advantages for non-linear complex modeling to binary data. In neural network architectures, I applied NRBF and MLP architecture model for binary data which represent who had a win or not.

  • PDF

Photoluminescence Studies of ZnO Thin Films on Porous Silicon Grown by Plasma-Assisted Molecular Beam Epitaxy

  • Kim, Min-Su;Nam, Gi-Woong;Kim, So-A-Ram;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Son, Jeong-Sik;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.310-310
    • /
    • 2012
  • ZnO thin films were grown on porous silicon (PS) by plasma-assisted molecular beam epitaxy (PA-MBE). The optical properties of the ZnO thin films grown on PS were studied using room-temperature, low-temperature, and temperature-dependent photoluminescence (PL). The full width at half maximum (FWHM) of the near-band-edge emission (NBE) from the ZnO thin films was 98 meV, which was much smaller than that of ZnO thin films grown on a Si substrate. This value was even smaller than that of ZnO thin films grown on a sapphire substrate. The Huang-Rhys factor S associated with the free exciton (FX) emission from the ZnO thin films was found to be 0.124. The Eg(0) value obtained from the fitting was 3.37 eV, with ${\alpha}=3.3{\times}10^{-2}eV/K$ and ${\beta}=8.6{\times}10^3K$. The low- and high-temperature activation energies were 9 and 28 meV, respectively. The exciton radiative lifetime of the ZnO thin films showed a non-linear behavior, which was established using a quadratic equation.

  • PDF

Drying Kinetics of Onion Slices in a Hot-air Dryer

  • Lee, Jun-Ho;Kim, Hui-Jeong
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.3
    • /
    • pp.225-230
    • /
    • 2008
  • Onion slices were dehydrated in a single layer at drying air temperatures ranging from $50{\sim}70^{\circ}C$ in a laboratory scale convective hot-air dryer at an air velocity of 0.66 m/s. The effect of drying air temperature on the drying kinetic characteristics were determined. It was found that onion slices would dry within $210{\sim}460\;min$ under these drying conditions. Moisture transfer during dehydration was described by applying the Fick's diffusion model and the effective diffusivity changed between $1.345{\times}10^{-8}$ and $2.658{\times}10^{-8}\;m^2/s$. A non-linear regression procedure was used to fit 9 thin layer drying models available in the literature to the experimental drying curves. The Logarithmic model provided a better fit to the experimental drying data as compared to other models. Temperature dependency of the effective diffusivity during the hot-air drying process obeyed the Arrhenius relationship with estimated activation energy being 31.36 kJ/mol. The effect of the drying air temperature on the drying model constants and coefficients were also determined.

Effects of Ethanol on Na-K-ATPase Activity of Cat Kidney (Ethanol 이 고양이 신장 Na-K-ATPase 활성에 미치는 영향)

  • Kim, Joo-Heon;Kim, Yong-Keun
    • Korean Journal of Veterinary Research
    • /
    • v.23 no.1
    • /
    • pp.9-16
    • /
    • 1983
  • The effects of ethanol on Na-K-ATPase activity were investigated with cat kidney homogenate. The results were summarized as follows: 1. Na-K-ATPase activity was inhibited with dose-dependent manner by ethanol of higher concentration than 1%, and showed an estimated $I_{50}$ (the inhibitor concentration to cause 50% inhibition) of 7.5%. 2. Hydrolysis of ATP was linear with the incubation time in the absence and presence of 8% ethanol, whereas it was different with preincubation time in the presence of 15% ethanol. 3. Inhibition of Na-K-ATPase activity by ethanol was not affected by increased enzyme concentration, and showed the reversibility of the inhibitory pattern. 4. Kinetic studies of cationic-substrate activation of Na-K-ATPase showed that ethanol had both properties of classical competitive inhibition for $Mg^{{+}{+}}$ or $K^+ and non-competitive inhibition for ATP or $Na^+$. 5. Arrhenius plot yield two break point at $21^{\circ}$ and $30^{\circ}C$ in the absence of ethanol, whereas showing only one break point at $18^{\circ}C$ in the presence of 8% ethanol. These results suggested that ethanol inhibited Na-K-ATPase activity reversible through a disturbance of microenvironment of lipids associated with the enzyme.

  • PDF

Hydrothermal Growth and Characteristics of ZnO Nanorods on R-plane Sapphire Substrates

  • Kim, Min-Su;Kim, So-A-Ram;Nam, Gi-Ung;Park, Hyeong-Gil;Yun, Hyeon-Sik;Im, Jae-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.236-237
    • /
    • 2012
  • ZnO nanorods were grown on R-plane sapphire substrates with the seed layers annealed at different temperature. The effects of annealing temperature for the seed layers on the properties of the ZnO nanorods were investigated by scanning electron microscopy, X-ray diffraction, UV-visible spectroscopy, and photoluminescence. For the as-prepared seed layers, the ZnO nanorods and the ZnO nanosheets were observed. Only the ZnO nanorods were grown as the annealing temperature was above $700^{\circ}C$. The optical transmittance in the UV region was almost zero while that in the visible region was gradually increased as the annealing temperature increased to $700^{\circ}C$. The optical band gap of the ZnO nanorods was increased as the annealing temperature increased to $700^{\circ}C$. In the visible region, the refractive index was decreased with increasing the wavelength, and the extinction coefficient was decreased as the annealing temperature increased to $700^{\circ}C$. The non-linear exciton radiative life time of the FX emission peak was established by cubic equation. The values of Varshni's empirical equation fitting parameters were ${\alpha}=4{\times}10^{-3}eV/K$, ${\beta}=1{\times}10^4K$, and $E_g(0)=3.335eV$ and the activation energy was found to be about 94.6 meV.

  • PDF

Stochastic Non-linear Hashing for Near-Duplicate Video Retrieval using Deep Feature applicable to Large-scale Datasets

  • Byun, Sung-Woo;Lee, Seok-Pil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4300-4314
    • /
    • 2019
  • With the development of video-related applications, media content has increased dramatically through applications. There is a substantial amount of near-duplicate videos (NDVs) among Internet videos, thus NDVR is important for eliminating near-duplicates from web video searches. This paper proposes a novel NDVR system that supports large-scale retrieval and contributes to the efficient and accurate retrieval performance. For this, we extracted keyframes from each video at regular intervals and then extracted both commonly used features (LBP and HSV) and new image features from each keyframe. A recent study introduced a new image feature that can provide more robust information than existing features even if there are geometric changes to and complex editing of images. We convert a vector set that consists of the extracted features to binary code through a set of hash functions so that the similarity comparison can be more efficient as similar videos are more likely to map into the same buckets. Lastly, we calculate similarity to search for NDVs; we examine the effectiveness of the NDVR system and compare this against previous NDVR systems using the public video collections CC_WEB_VIDEO. The proposed NDVR system's performance is very promising compared to previous NDVR systems.

Development of Quantification Method for Bioluminescence Imaging (발광영상에 대한 정량화 방법 개발)

  • Kim, Hyeon-Sik;Choi, Eun-Seo;Tak, Yoon-O;Choi, Heung-Kook;Lee, Ju-Young;Min, Jung-Joon;Lee, Byeong-Il
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.451-458
    • /
    • 2009
  • Purpose: Optical molecular luminescence imaging is widely used for detection and imaging of bio-photons emitted by luminescent luciferase activation. The measured photons in this method provide the degree of molecular alteration or cell numbers with the advantage of high signal-to-noise ratio. To extract useful information from the measured results, the analysis based on a proper quantification method is necessary. In this research, we propose a quantification method presenting linear response of measured light signal to measurement time. Materials and Methods: We detected the luminescence signal by using lab-made optical imaging equipment of animal light imaging system (ALIS) and different two kinds of light sources. One is three bacterial light-emitting sources containing different number of bacteria. The other is three different non-bacterial light sources emitting very weak light. By using the concept of the candela and the flux, we could derive simplified linear quantification formula. After experimentally measuring light intensity, the data was processed with the proposed quantification function. Results: We could obtain linear response of photon counts to measurement time by applying the pre-determined quantification function. The ratio of the re-calculated photon counts and measurement time present a constant value although different light source was applied. Conclusion: The quantification function for linear response could be applicable to the standard quantification process. The proposed method could be used for the exact quantitative analysis in various light imaging equipments with presenting linear response behavior of constant light emitting sources to measurement time.

Electrochemical Properties of PAN-based Carbon Fibers Tow Electrode Using Organic/inorganic Nanocomposite and Its Application of Non-enzymatic Sensor (유/무기 나노 복합체를 이용한 PAN계 탄소섬유 토우 유연 전극의 전기화학적 특성 평가 및 비효소 전기화학 센서의 활용)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.233-237
    • /
    • 2024
  • This study is about the fabrication of a flexible electrode based on PAN-based carbon fibers tow using organic/inorganic nanocomposite and its application of non-enzymatic sensor. The organic/inorganic nanocomposite was composed of the conductive polymer polyaniline (PANI) and the metal oxide CuO. And glucose was used as the target of the electrochemical sensor. Commercialized CFTs were pretreated through heat treatment for desizing and electrochemical oxidation for activation. This nanocomposite was sequentially synthesized on the pretreated CFT surface using electrochemical polymerization and electrochemical deposition. Finally, the CFT/PANI/CuO NPs electrode was obtained. The electrochemical properties and sensing performance of the CFT/PANI/CuO NPs electrode were analyzed using chronoamperometry (CA), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The sensitivity of the CFT/PANI/CuO NPs electrode was about 8.352 mA/mM (in a linear range of 0.445~6.674 mM) and 3.369 mA/mM (in a linear range of 6.674~50 mM), respectively. So, the CFT/PANI/CuO NPs electrode exhibited the enhanced sensing performances due to unique properties such as small peak potential separation, low electron transfer resistance, and large specific surface area.