• Title/Summary/Keyword: non-invasive detection

Search Result 142, Processing Time 0.037 seconds

Embryo sexing methods in bovine and its application in animal breed

  • Bora, Shelema Kelbessa
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.80-86
    • /
    • 2022
  • The ability to determine the sex of bovine embryos before the transfer is advantageous in livestock management, especially in dairy production, where female calves are preferred in milk industry. The milk production of female and male cattle benefits both the dairy and beef industries. Pre-implantation sexing of embryos also helps with embryo transfer success. There are two approaches for sexing bovine embryos in farm animals: invasive and non-invasive. A non-invasive method of embryo sexing retains the embryo's autonomy and, as a result, is less likely to impair the embryo's ability to move and implant successfully. There are lists of non-invasive embryo sexing such as; Detection of H-Y antigens, X-linked enzymes, and sexing based on embryo cleavage and development. Since it protects the embryo's autonomy, the non-invasive procedure is considered to be the safest. Invasive methods affect an embryo's integrity and are likely to damage the embryo's chances of successful transformation. There are different types of invasive methods such as polymerase chain reaction, detection of male chromatin Y chromosome-specific DNA probes, Loop-mediated isothermal amplification (LAMP), cytological karyotyping, and immunofluorescence (FISH). The PCR approach is highly sensitive, precise, and effective as compared to invasive methods of farm animal embryonic sexing. Invasive procedures, such as cytological karyotyping, have high accuracy but are impractical in the field due to embryonic effectiveness concerns. This technology can be applicable especially in the dairy and beef industry by producing female and male animals respectively. Enhancing selection accuracy and decreasing the multiple ovulation embryo transfer costs.

Non-invasive Blood Glucose Detection Sensor System Based on Near-Infrared Spectroscopy (근적외선 분광법 기반 비침습식 혈당 검출 센서 시스템)

  • Kang, Young-Man;Han, Soon-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.991-1000
    • /
    • 2021
  • Among non-invasive blood glucose detection technologies, the optical technique is a method that uses light reflection, absorption, and scattering characteristics when passing through a biological medium. It reduces pain or discomfort in measurement and has no risk of infection. So it is becoming a major flow of blood glucose detection research. Among them, near-infrared spectroscopy has a disadvantage in that the complexity increases when analyzing signals detected due to interferences between proteins and acids that share a similar absorption function with blood glucose molecules. In this study, a non-invasive sensor system with multiple near-infrared bands was designed and manufactured to alleviate the deterioration of blood glucose detection function that may occur due to skin absorption of near-infrared rays. A blood survey was conducted to verify the system, and the degree of blood glucose response in the blood was collected as spectral data, and the results of this study were quantitatively verified in terms of correlation between the data and blood glucose.

Development of a New Non-invasive Fetal Hypoxia Diagnosis System (새로운 비관혈적 태아 저산소증 진단 방법개발에 관한 연구)

  • Lee, Jeon;Lee, Kyoung-Joung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.11
    • /
    • pp.495-501
    • /
    • 2006
  • Diagnostics of unborn baby is mainly aimed at prediction and detection of occurrence of intrauterine hypoxia. Consequences resulting from fetal hypoxia appear in its heart activity. In this study, we have developed a new non-invasive system for fetal hypoxia diagnosis which provides systolic time interval(STI) parameters on the basis of analysis of electrical and mechanical heart activity together. For this we have worked on 1) the proper lead system for the acquisition of abdominal ECG, 2) the independent component analysis based signal processing and fetal ECG separation, 3) the development of a hardware which consists of an abdominal ECG amplifying module and an ultrasound module and 4) the detection of characteristic points of FECG and Doppler signal and the extraction of diagnostic parameters. The developed system was evaluated by the clinical experiments in which 33 subjects were participated. The acquired STI by the system were distributed within the ranges from the well-established invasive results of other researchers. From this, we can conclude that the developed non-invasive fetal hypoxia diagnosis system is useful.

Exploring small mammal monitoring in South Korea: The debut of the Mostela

  • Hee-Bok Park;Anya Lim
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.211-218
    • /
    • 2023
  • Background: Traditional wildlife monitoring has often relied on invasive techniques posing risks to species and demanding substantial resources. To address this, camera traps emerged as non-invasive alternatives, albeit primarily tailored for larger mammals, posing limitations for small mammal research. Thus, the Mostela, an innovative tool designed to overcome these challenges, was introduced to monitor small mammals in South Korea. Results: The Mostela was deployed at two study sites in South Korea, yielding compelling evidence of its efficiency in capturing small mammal species. By analyzing the collected data, we calculated the relative abundance of each species and elucidated their activity patterns. Conclusions: In summary, the Mostela system demonstrates substantial potential for advancing small mammal monitoring, offering valuable insights into diversity, community dynamics, activity patterns, and habitat preferences. Its application extends to the detection of endangered and rare species, further contributing to wildlife conservation efforts in South Korea. Consequently, the Mostela system stands as a valuable addition to the toolkit of conservationists and researchers, fostering ethical and non-invasive research practices while advancing our understanding of small mammal populations and ecosystems.

Reliability of Stool Antigen Tests: Investigation of the Diagnostic Value of a New Immunochromatographic Helicobacter pylori Approach in Dyspeptic Patients

  • Korkmaz, Huseyin;Findik, Duygu;Ugurluoglu, Ceyha;Terzi, Yuksel
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.657-660
    • /
    • 2015
  • Background: A diagnosis of H. pylori infection can be made by invasive or non-invasive methods. Several noninvasive diagnostic tests based on the detection of H. pylori stool antigen (HpSA) have been developed. The Genx H. pylori stool antigen card test is a new rapid, non-invasive test that is based on monoclonal immunochromatographic assay. The aim of this study was to determine its sensitivity, specificity, and diagnostic accuracy for diagnosing H. pylori infection in adult patients. Materials and Methods: A total of 162 patients were included in the study. A gastric biopsy was collected for histopathology and rapid urease testing. Stool specimens for HpSA testing were also collected. Patients were considered H. pylori positive if two invasive tests (histological and rapid urease tests) were positive. Results: Using the reference test, 50.6% of the samples were positive for H. pylori infection. The Genx H. pylori antigen test was positive in 19.7% of patients. The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of the Genx H. pylori antigen test were 51.6%, 96.0%, 88.8%, 76.1%, and 79.0%, respectively. Conclusions: The Genx H. pylori stool antigen card test is a new non-invasive method that is fast and simple to perform but provides less reliable results.

Non-invasive quantification methods for glucose monitoring (포도당 모니터링을 위한 비침습적 정량화 방법)

  • Young Ho, Kim;Yeong-Seo, Park;Byeong Uk, Park;inkwon, Yoon;Hee-Jae, Jeon
    • Journal of Industrial Technology
    • /
    • v.42 no.1
    • /
    • pp.13-18
    • /
    • 2022
  • Diabetes mellitus is an abnormally high glucose level in the bloodstream. Several pharmaceuticals are administered to diabetic patients to control their glucose levels. Early diagnosis and proper glycemic management are essential in this situation to prevent further progression and complications. Biosensor-based detection has progressed and shown potential in portable and inexpensive daily assessment of glucose levels because of its simplicity, low cost, and convenient operation without sophisticated instrumentation. This review discusses various systemic aspects of non-invasive glucose monitoring, including materials for monitoring and managing diabetes.

Noninvasive molecular biomarkers for the detection of colorectal cancer

  • Kim, Hye-Jung;Yu, Myeong-Hee;Kim, Ho-Guen;Byun, Jong-Hoe;Lee, Cheolju
    • BMB Reports
    • /
    • v.41 no.10
    • /
    • pp.685-692
    • /
    • 2008
  • Colorectal cancer (CRC) is the third most common malignancy in the world. Because CRC develops slowly from removable precancerous lesions, detection of the disease at an early stage during regular health examinations can reduce both the incidence and mortality of the disease. Although sigmoidoscopy offers significant improvements in the detection rate of CRC, its diagnostic value is limited by its high costs and inconvenience. Therefore, there is a compelling need for the identification of noninvasive biomarkers that can enable earlier detection of CRC. Accordingly, many validation studies have been conducted to evaluate genetic, epigenetic or protein markers that can be detected in the stool or in serum. Currently, the fecal-occult blood test is the most widely used method of screening for CRC. However, advances in genomics and proteomics combined with developments in other relevant fields will lead to the discovery of novel non invasive biomarkers whose usefulness will be tested in larger validation studies. Here, non-invasive molecular biomarkers that are currently used in clinical settings and have the potential for use as CRC biomarkers are discussed.

Comparison of the non-invasive diagnostic methods, stool antigen test and PCR assay, for Helicobacter felis detection in dogs

  • Hong, Sunhwa;Lee, Hak-Yong;Kim, Tae-Wan;Kim, Okjin
    • Korean Journal of Veterinary Service
    • /
    • v.38 no.1
    • /
    • pp.37-42
    • /
    • 2015
  • The aim of the present study was to compare the non-invasive methods for the diagnosis of H. felis with HpSA kit-based detection method and H. felis-specific PCR assay with dog's stool samples without sacrifice. Male Beagle dogs (n=6) were infected with H. felis ATCC 49179 ($1.0{\times}10^9CFU/dog$) by intra-gastric inoculation two times at 3-day intervals, and the stool specimens of dogs were collected 1, 3, 5, 7, 14, 21 days after infection to submit to HpSA test and H. felis-specific PCR. As the results, the sensitivity of the HpSA and the PCR analysis was 50.0%, 83.3% respectively. Although HpSA test is less sensitive, it could be used for rapid, cheap and easy screening assay for H. felis infection in dog and cats. We suggest that the H. pylori stool antigen kit, HpSA, is useful and effective for monitoring H. felis infection. If HpSA test would be made with H. felis antibodies in the future, its sensitivity could be increased. Also, PCR assay could be successfully used to detect the H. felis in stools. Applying the H. pylori stool antigen kit and PCR assay may be the recommended non-invasive strategy to identify H. felis in dog and cats.

Non-Invasive Environmental Detection using Heat Shock Gene-Green Fluorescent Protein Fusions

  • Cha, Hyeong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.355-356
    • /
    • 2000
  • Three 'stress probe' plasmids were constructed and characterized which utilize a green fluorescent protein (CFP) as a non-invasive reporter to elucidate Escherichia coli cellular stress responses in quiescent or 'resting' cells. Facile detection of cellular stress levels was achieved by fusion of three heat shock stress protein promoter elements, those of the heat shock transcription factor ${\sigma}^{32}$, pretense subunit ClpB, and chaperone DnaK, to the reporter gene $gfp_{uv}$. When perturbed by chemical or physical stress (such as heat shock, nutrient (amino acid) limitation, addition of IPTG, acetic acid, ethanol, phenol, antifoam, and salt (osmotic shock), the E. coli cells produced GFPuv which was easily detected from within the cells as emitted green fluorescence. A temporal and amplitudinal mapping of these responses was performed, demonstrating regions where quantitative delineation of cell stress was afforded.

  • PDF

Blood Glucose Measurement Principles of Non-invasive Blood Glucose Meter: Focused on the Detection Methods of Blood Glucose (무채혈 혈당 측정기의 혈당 측정 원리: 혈당 검출방법 중심으로)

  • Ahn, Wonsik;Kim, Jin-Tae
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.114-127
    • /
    • 2012
  • Recent technical advancement allows noninvasive measurement of blood glucose. In this literature, we reviewed various noninvasive techniques for measuring glucose concentration. Optical or electrical methods have been investigated. Optical techniques include near-infrared spectroscopy, Raman spectroscopy, optical coherence technique, polarization, fluorescence, occlusion spectroscopy, and photoacoustic spectroscopy. Electrical methods include reverse iontophoresis, impedance spectroscopy, and electromagnetic sensing. Ultrasound, detection from breath, or fluid harvesting technique can be used to measure blood glucose level. Combination of various methods is also promising. Although there are many interesting and promising technologies and devices, there need further researches until a commercially available non-invasive glucometer is popular.