• 제목/요약/키워드: non-ignorable missing data

검색결과 7건 처리시간 0.017초

On statistical Computing via EM Algorithm in Logistic Linear Models Involving Non-ignorable Missing data

  • Jun, Yu-Na;Qian, Guoqi;Park, Jeong-Soo
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 추계 학술발표회 논문집
    • /
    • pp.181-186
    • /
    • 2005
  • Many data sets obtained from surveys or medical trials often include missing observations. When these data sets are analyzed, it is general to use only complete cases. However, it is possible to have big biases or involve inefficiency. In this paper, we consider a method for estimating parameters in logistic linear models involving non-ignorable missing data mechanism. A binomial response and normal exploratory model for the missing data are used. We fit the model using the EM algorithm. The E-step is derived by Metropolis-hastings algorithm to generate a sample for missing data and Monte-carlo technique, and the M-step is by Newton-Raphson to maximize likelihood function. Asymptotic variances of the MLE's are derived and the standard error and estimates of parameters are compared.

  • PDF

불완전한 반복측정 자료의 보정방법 (Methods for Handling Incomplete Repeated Measures Data)

  • 우해봉;윤인진
    • 한국조사연구학회지:조사연구
    • /
    • 제9권2호
    • /
    • pp.1-27
    • /
    • 2008
  • 사회조사 자료를 활용한 통계분석에 있어서 불완전 자료의 문제는 거의 모든 연구자들이 경험하는 하나의 보편적인 문제이다. 불완전 자료의 문제는 특히 패널조사와 같은 종단적 자료를 활용한 연구에 있어서 중요한 이슈가 된다. 본 연구의 목적은 최근까지 이루어진 불완전 자료에 대한 보정방범을 소개하는 것이다. 특히, 본 연구는 패널자괴에서 발생한 불완전 자료의 처리에 대한 관심이 부족한 점을 고려하여 최근까지 이루어진 보정방법들을 반복측정 패널자료 분석에 적용하는데 초점을 맞춘다. 첫째, 본 연구는 불완전 자료에 대한 적절하지 못한 사후처리는 분석결과에 있어서 유의미한 차이로 이어 수 있음을 시사한다. 특히, 분석결과는 반복측정 자료를 사용하는 연구의 경우 불완전 자료의 발생은 궤적의 초기값보다는 시간의 경과에 따른 궤적의 변화를 적절히 추정하는데 문제를 가질 수 있음을 시사하고 있다. 둘째, 분석결과는 완전제거법이나 평균대체법이 EM, FIML, MICE 방법들에 비해 불완전 자료의 처리효과가 상대적으로 떨어짐을 보여준다. 특히, 완전제거법이나 평균대체법과 같은 방법에 비해 최대우도법이나 다중대체법이 갖는 상대적 우위는 MCAR 가정에 비해 보다 현실적인 가정이라고 할 수 있는 MAR 조건하에서 크게 나타난다. 본 연구의 분석결과는 또한 비록 결측치의 발생기제가 MNAR 상황이라고 하더라도 연구자가 결측치의 발생과 관련된 변수들을 보정과정에서 적절하게 활용하면 편의의 상당부분을 감소시킬 수 있음을 시사한다.

  • PDF

EXTENSION OF FACTORING LIKELIHOOD APPROACH TO NON-MONOTONE MISSING DATA

  • Kim, Jae-Kwang
    • Journal of the Korean Statistical Society
    • /
    • 제33권4호
    • /
    • pp.401-410
    • /
    • 2004
  • We address the problem of parameter estimation in multivariate distributions under ignorable non-monotone missing data. The factoring likelihood method for monotone missing data, termed by Rubin (1974), is extended to a more general case of non-monotone missing data. The proposed method is algebraically equivalent to the Newton-Raphson method for the observed likelihood, but avoids the burden of computing the first and the second partial derivatives of the observed likelihood. Instead, the maximum likelihood estimates and their information matrices for each partition of the data set are computed separately and combined naturally using the generalized least squares method.

Partitioning likelihood method in the analysis of non-monotone missing data

  • Kim Jae-Kwang
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2004년도 학술발표논문집
    • /
    • pp.1-8
    • /
    • 2004
  • We address the problem of parameter estimation in multivariate distributions under ignorable non-monotone missing data. The factoring likelihood method for monotone missing data, termed by Robin (1974), is extended to a more general case of non-monotone missing data. The proposed method is algebraically equivalent to the Newton-Raphson method for the observed likelihood, but avoids the burden of computing the first and the second partial derivatives of the observed likelihood Instead, the maximum likelihood estimates and their information matrices for each partition of the data set are computed separately and combined naturally using the generalized least squares method. A numerical example is also presented to illustrate the method.

  • PDF

무응답을 가지고 있는 범주형 자료에 대한 모형 선택 방법 (Model selection method for categorical data with non-response)

  • 윤용화;최보승
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권4호
    • /
    • pp.627-641
    • /
    • 2012
  • 본 연구는 다차원 분할표 형태로 정리된 범주형 자료가 결측치나 무응답을 가지고 있을 때 주어진 자료를 가장 잘 설명하고 예측의 정확도를 높일 수 있는 모형의 추정과 모형의 선택 문제를 다루었다. 무시할 수 없는 무응답 (non-ignorable non-response)체계하에서 최대우도 추정에서 발생할 수 있는 변방값 문제를 해결하기 위하여 계층적 베이지안 모형을 고려하였다. 또한 모형 적도를 높이기 위한 변수 조합을 찾는 모형 선택의 문제를 함께 다루었다. 베이지안 접근하에서 모형 선택의 문제를 다루기 위하여 베이즈 인자 (Bayes factor)를 모형 선택의 기준으로 이용하였다. 제시된 방법은 2004년 실시된 우리나라 국회의원 선거를 앞두고 수행된 여론조사 데이터를 이용하여 실증분석을 수행하였다. 분석결과 무시할 수 없는 무응답 체계하에서 설명변수로 투표참여여부를 이용하는 것이 가장 적합한 모형으로 판명되었다.

경시적 영과잉 가산자료와 생존자료의 결합모형 (A joint modeling of longitudinal zero-inflated count data and time to event data)

  • 김동욱;천지훈
    • 응용통계연구
    • /
    • 제29권7호
    • /
    • pp.1459-1473
    • /
    • 2016
  • 시간의 흐름에 따라 관측되는 경시적(longitudinal) 자료의 경우, 경시적 자료와 생존(survival) 자료가 종종 동시에 수집된다. 이 때 경시적 자료에서 발생하는 결측이 생존자료와의 연관성으로 인해 발생한 무시할 수 없는 결측(non-ignorable missing)이라면, 경시적 자료분석 방법만으로는 두 자료 간의 연관성을 고려하지 않아 독립변수에 대한 효과는 편향된 결과를 얻게 된다. 이러한 문제를 해결하기 위해서 결측의 원인이 생존시간과 연관되어 있으므로 생존모형을 고려하여 불편추정량을 얻기 위해 경시적 자료와 생존자료의 결합모형에 대한 연구가 이루어져 왔다. 본 논문은 경시적 자료의 형태가 영이 많이 존재하는 영과잉 가산자료(zero-inflated count data)와 생존자료의 결합모형을 연구하였다. 경시적 영과잉 가산자료와 생존자료는 각각 허들모형(hurdle model)과 비례위험모형(proportional hazards model)의 부 모형을 적용하였고, 두 부 모형들의 변량효과가 다변량 정규분포를 따른다는 가정을 통하여 결합하였다. 모수의 최우추정법으로 EM 알고리즘을 활용하였고, 추정된 표준오차를 계산하기 위해 프로파일 우도(profile likelihood)를 이용하였다. 최종적으로 모의실험을 통해 두 부 모형의 변량효과 간 상관관계가 존재하는 경우 결합모형이 개별적 모형보다 편의와 포함확률(coverage probability)의 측면에서 더 우수함을 보였다.

Monte-Carlo expectation-maximaization 방법을 이용한 무응답 모형 추정방법 (An estimation method for non-response model using Monte-Carlo expectation-maximization algorithm)

  • 최보승;유현상;윤용화
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권3호
    • /
    • pp.587-598
    • /
    • 2016
  • 각종 선거를 앞두고 여러 여론조사 기관들은 다양한 방법으로 선거 결과를 예측한다. 조사를 통한 선거 예측을 수행하는 데 있어서 발생할 수 있는 문제점 중 하나는 무응답이며 무응답 대체 방법에 따라 예측 결과는 완전히 다른 결과를 생산해 낼 수 있다. 본 연구에서는 무응답 대체의 방법으로 모형을 기반으로 한 대체 방법에 대하여 연구하였다. 특히, 최대 우도 추정 방법을 적용했을 때 무시할 수 없는 무응답 (non-ignorable non-response) 체계 하에서 발생할 수 있는 변방 값 문제를 해결하기 위해 Wei와 Tanner (1990)가 제안한 Monte Carlo EM 알고리즘을 적용하였다. 모의 실험을 통하여 MCEM 방법과 기존의 최대 우도 추정 방법, 베이지안 추정 방법 사이의 비교 연구를 진행하였고 그 결과 MCEM 방법이 기존 방법들에 대한 대안 방법으로 이용될 수 있음을 보였다. 또한 2012년에 시행된 제18대 대통령 선거 당일의 출구조사 자료를 적용하여 실증 분석을 수행하였다. 예측 결과를 비교하기 위해 Bautista 등 (2007)이 제안한 MWPE (modified within precinct error)를 이용하였다.