• 제목/요약/키워드: non-homogeneous haze

검색결과 2건 처리시간 0.014초

불균일 안개 영상 합성을 이용한 딥러닝 기반 안개 영상 깊이 추정 (Non-Homogeneous Haze Synthesis for Hazy Image Depth Estimation Using Deep Learning)

  • 최영철;백지현;주광진;이동건;황경하;이승용
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제28권3호
    • /
    • pp.45-54
    • /
    • 2022
  • 영상의 깊이 추정은 다양한 영상 분석의 기반이 되는 기술이다. 딥러닝 모델을 활용한 분석 방법이 대두되면서, 영상의 깊이 추정 분야 또한 딥러닝을 활용하는 연구가 활발하게 이루어지고 있다. 현재 대부분의 딥러닝 영상 깊이 추정 모델들은 깨끗하고 이상적인 환경에서 학습되고 있다. 하지만 연무, 안개가 낀 열악한 환경에서도 깊이 추정 기술이 잘 동작할 수 있으려면 이러한 환경의 데이터를 포함하여야 한다. 하지만 열악한 환경의 영상을 충분히 확보하는 것이 어려운 실정이며, 불균일한 안개 데이터를 얻는 것은 특히 어려운 문제이다. 이를 해결하기 위해, 본 연구에서는 불균일 안개 영상 합성 방법과 이를 활용한 단안 기반의 깊이 추정 딥러닝 모델의 학습을 제안한다. 안개가 주로 실외에서 발생하는 것을 고려하여, 실외 위주의 데이터 세트를 구축한다. 그리고 실험을 통해 제안된 방법으로 학습된 모델이 합성 데이터와 실제 데이터에서 깊이를 잘 추정하는 것을 보인다.

흐릿함 농도 평가기를 이용한 국부적 안개 제거 방법 (Local Dehazing Method using a Haziness Degree Evaluator)

  • 이승민;강봉순
    • 한국정보통신학회논문지
    • /
    • 제26권10호
    • /
    • pp.1477-1482
    • /
    • 2022
  • 안개는 매우 작은 물방울이 대기 중에 떠돌아다니는 국지적인 기상현상으로 지역에 따라 안개 양과 특성이 다를 수도 있다. 특히 이러한 안개로 인해 가시거리가 줄어들어 항공 교통 방해와 차량 교통사고를 유발할 수 있으며, 보안용 CCTV 등 의 화질을 저하시킨다. 따라서 최근 10년간 안개로 인한 피해를 줄이기 위해 안개제거 연구가 활발히 진행되고 있다. 본 연구에서는 안개가 없을 경우, 안개가 고르게 분포한 경우, 그리고 안개가 국지적으로 다른 경우에 적응적으로 대응할 수 있도록 흐릿함 농도 평가기를 이용한 가중치 생성을 통해 국부적인 안개 제거를 수행한다. 그리고 입력 영상에 안개가 있다고 가정하고 안개를 제거하는 기존의 정적인 방식의 안개제거 방법의 한계점을 개선시킨다. 또한 벤치마크 알고리즘과의 정량 및 정성적 성능 평가를 통해 제안하는 방법의 우수성을 증명한다.