• Title/Summary/Keyword: non-ferrous metal smelters

Search Result 4, Processing Time 0.017 seconds

Characterization of lead isotope emission profiles in non-ferrous smelters in South Korea (국내 비철금속 제련시설에서의 납 동위원소 배출특성 연구)

  • Park, Jin-Ju;Kim, Ki-Jun;Park, Jin-Soo;Yoo, Suk-Min;Park, Kwang-Soo;Seok, Kwang-Seol;Shin, Hyung-Sun;Song, Guem-Joo;Kim, Young-Hee
    • Analytical Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.333-339
    • /
    • 2013
  • This study was conducted to build up the inventories of Pb isotopic compositions of major Pb pollution sources in South Korea. Since non-ferrous metal smelters are one of major anthropogenic sources, two smelters for zinc, each one of smelter for lead and copper were selected for the study. The Pb concentrations and isotopic compositions of metal ores, wastewater, sludge, metal rod and produced sulfuric acid were analysed to understand the Pb isotopic patterns in environment. The isotopic ratio, $^{206}Pb/^{207}Pb$, of zinc ores from zinc smelter were in the range of 1.179~1.198 and the ratio of waste, flue gas and products samples were 1.105~1.147. This results implied that the isotopic patterns of output samples showed mixing patterns between two distinct metal ore soerces. In 2011, major importing countries of zinc ore were Australia, Peru and Mexico. Thus Pb isotopic patterns from zinc smelter is originated from the mixing patterns between less radiogenic Australian ores and more radiogenic South America's ores. Lead smelters also showed the same mixing patterns with those of zinc smelters. However copper smelter showed same Pb isotopic patterns with more radiogenic South America's ores.

Technological Modules for the Recycling of Urban Mines and Non-Ferrous Smelting Processes in Korea (도시광산(都市鑛山) 재자원화(再資源化)기술의 모듈과 한국(韓國)의 비철제련(非鐵製鍊) 프로세스)

  • Oh, Jae-Hyun;Kim, Joon-Soo;Moon, Suk-Min;Min, Ji-Won
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.3-16
    • /
    • 2012
  • In order to review the technological modulus of the recycling of urban mine resources and non-ferrous smelting process in Korea, key point of recycling process, physical separation, non-ferrous smelting process, unit operation for the recycling technology, recycling process of LS-Nikko Copper and Korea Zinc were studied. Finally, metal recycling processes of the typical non-ferrous smelters in Japan such sa DOWA Holdings and JX Holdings were compared with those of LS-Nikko Copper and Korea Zinc.

Mercury Research and Management in Korea (국내 수은 연구 동향 및 관리 현황)

  • Jurng, Jong-Soo;Shim, Shang-Gyoo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.2
    • /
    • pp.99-107
    • /
    • 2009
  • This paper reviews the current status of mercury research on exposure and contamination, mercury emissions, emission limits and control technologies, long-range transport and deposition research, and mercury management policy in Korea. According to a monitoring of the Ministry of Environment and the Ministry of Health and Welfare, blood mercury levels among Koreans are $5{\sim}8$ times higher than those of U.S. and Germany. The most dominant source of exposure to mercury is through dietary intake. Emissions of mercury from coal-fired power plants are estimated 8.93 ton/year in 2004. Emissions of mercury from other important sources, such as waste incineration, steel and cement manufacturing and non-ferrous metal smelting operations are to be further investigated. A study on long-range transport of mercury suggests that the dry deposition flux over the Yellow Sea was much greater than those for other oceans. As a whole, the amounts of wet depositions of nitrogen and sulfur were 1.9 and 1.5 times larger than the amounts of dry depositions in each species, respectively. Substantial influence from China caused by high emissions in East China and westerly wind was possibly suggested. However, the influence from nitrogen emission in Korea was also confirmed. Korean Government has already adopted stringent emission limits on mercury for incinerators and boilers in 2005. However, emission limits for coal-fired power plants and non-ferrous metal smelters are rather relaxed. As the above mentioned two sources can be two most important sources of mercury emissions, control strategy for those sources are to be considered.

Size Distribution and Source Identification of Airborne Particulate Matter and Metallic Elements in a Typical Industrial City

  • Ny, Mai Tra;Lee, Byeong-Kyu
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.1
    • /
    • pp.9-19
    • /
    • 2010
  • The size distribution of airborne particulate matter (PM) and the concentrations of associated metallic elements were investigated in a busy urban region of a typical Korean industrial city. The PM concentrations measured during the spring, except for those in the size range of 1.1 to 2.1 ${\mu}m$, were slightly higher than the PM concentrations in the summer. Coarse particles contributed greatly to the variation in PM concentrations in the spring, while fine and submicron particles contributed largely to the variation in PM concentrations in the summer. The difference in size modes of the PM concentrations between spring and summer may be explained by the Asian dust effect and its accompanying wind direction and speed. Extremely high enrichment factors (EFs) values (6,971 to 60,966) for all of the size distributions in PM were identified for cadmium (Cd). High EFs values (12 to 907) were also identified for other heavy metals including Cr, Cu, Ni, Pb, Zn and Mn. Low EF values (0.29 to 8.61) were identified for Ca, K, Mg and Na. These results support the common hypothesis that most heavy metals in ambient PM have anthropogenic sources and most light metals have crustal sources. The results of principal components analyses and cluster analyses for heavy metals indicate that the principal sources of PM and metals were emissions from non-ferrous metal smelters, oil combustion, incinerators, vehicular traffic and road dust.