• Title/Summary/Keyword: non-embryogenic callus

Search Result 24, Processing Time 0.031 seconds

High Efficiency of Plant Regeneration from Seed-Derived Callus of Zoysiagrass cv. Zenith (Zoysiagrass japonica의 효율적인 재분화체계에 관한 연구)

  • Ming Liang Chai
    • Asian Journal of Turfgrass Science
    • /
    • v.12 no.4
    • /
    • pp.195-202
    • /
    • 1998
  • The development of a protocol for high efficiency of embryogenic callus separation, maintenance and plant regeneration from the seeds of zoysiagrass cv. Zenith was studied. Embryogenic callus ratio is absolutely determined by genotype, but by adding high concentration of copper into medium, changing light condition and maintaining callus on initial induction medium for 8∼10 weeks, embryogenic callus can be easily distinguished and its growth can be promoted. There were significant differences among selected callus lines (each from one seed) according to their growth rates and regeneration percentages. Callus pre-treatment with activated charcoal inhibited callus growth, increased the level of precocious germination during culture and promoted shoot cluster formation after transfer to regeneration medium. For long-term callus maintenance, N6AA medium was better than MS medium, because the former inhibited non-embryogenic callus formation and kept vigor of embryogenic callus. The best callus lines Z-(5) has been successfully used for transformation and somaclonal variation selection in our laboratory.

  • PDF

Changes and characteristics of the biochemical components on the differentiation of soybean cell tissue cultures: (1) Changes and characteristics of the proteins, amino acids and peroxidase isozymes on differentiation of soybean cell tissue cultures (대두 기내 배양체의 분화에 대한 생화학적 성분의 변화와 특성 : (I) 대두 기내 배양체의 분화에 대한 단백질, 아미노산 및 peroxidase 동위효소의 변화와 특성)

  • Nam, Sang-Hae;Choi, Sang-Uk;Yang, Min-Suk
    • Applied Biological Chemistry
    • /
    • v.34 no.2
    • /
    • pp.134-141
    • /
    • 1991
  • In order to investigate the changes and characteristics of biochemical metabolic substances of soybean tissue culture during the cultural period, immature cotyledons were detached form the plant on 15th days after flowering and cultured in vitro for 3 weeks. The cultures were classified into embryogenic(EC) and non-embryogenic callus(NEC). A part of the EC lines were subcultured for another 3 weeks and classified into root forming(RFC), and shoot forming cultures(SFC). Another part of the EC lines were used for isolation of protoplasts, which were subsequently cultured in vitro for 4 weeks. The cultures were classified into embryogenic(PEC) and non-embryogenic callus(PNEC) derived from the protoplasts. The cultures of EC and PEC lines showed higher phenylalanine content and lower methionine content than those of NEC and PNEC. At organ differentiation stage, both cultures showed the content of aspartic acid decreased, while the other amino acids increased as a whole. The protein pattern analysis of the cultures revealed that EC and NEC lines contained distinctive polypeptides, with mass of ca. 18KD for EC and ca. 22KD for NEC respectively. The EC and PEC lines also showed high activity of peroxidase isozyme A(piA), while the RFC and SFC lines showed that of peroxidase isozyme B(piB).

  • PDF

Variations in Sweetpotato Regenerates from Gamma-ray Irradiated Embryogenic Callus

  • Lee, Young-Ill;Lee, In-Sok;Lim, Yong-Pyo
    • Journal of Plant Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.163-170
    • /
    • 2002
  • Radiation induced and somaclonal variations were investigated in the regenerates from gamma irradiated and controlled embryogenic callus (EC) of sweetpotato cvs., Yulmi and White Star by morphological, RAPD and AFLP analysis. Most (approx. 90%) of the EC produced somatic embryos developed into plantlets after being transferred to the auxin-free medium. The frequency of morphological variants derived from the irradiated callus ranged from 3 to 7.8% compared to 0.1-1.1% of that derived from the non-irradiated. Morphological variants were selected from the regenerates and analyzed by RAPD and AFLP procedures. RAPD polymorphisms of Yulmi and White Star regenerates from irradiated calli were 8.8% and 6.1%, respectively. However, the polymerphisms among regenerates from the non-irradiation treatment in these two cultivars were non-detectable and 3%, respectively. AFLP polymorphisms of Yulmi and White Star regenerates from irradiated calli were 29.9% and 28.6%, respectively. while the frequencies for those form non-irradiated calli were 8.5% and 5.6%, respectively. Both the control plants and variants from the nonirradiated were clustered together, while variants from irradiated were separated from the group by Nearest-Neighbor-Interchange Branch Swapping Abbreviation: EC (Embryogenic callus), AFLP (Amplified Fragment Length Polymorphism), RAPD (Random amplified polymorphic DNA)

Induction of Embryogenic Callus and Plant Regeneration by Mature Embryo Culture of Onion (Allium cepa L.) (양파의 성숙배 배양을 통한 체세포배발생 캘러스 유기 및 식물체 재분화)

  • Cho Kwang-Soo;Hur Eun-Joo;Hong Su-Young;Moon Ji-Young
    • Journal of Plant Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.31-35
    • /
    • 2005
  • To obtain regeneration system of onion, we analyzed the effects of 2,4-D and BA concentration on the embryogenic callus induction from mature embryos. The highest embryogenic callus induction ratio was shown on MS medium (Murashie and Skoog 1962) containing $2.5\;\cal{mg/L}\;or\;5\;\cal{mg/L}$ picloram after mature embryos were placed on medium. When induced callus were cultured on half strength of MS medium containing $1\;\cal{mg/L}$ Kinetin, the highest shoot formation ratio was observed on MS medium containing $1\;{mg/L}$ 2,4-D and $1\;{mg/L}$ BA. Embryogenic callus were cultured in MS liquid medium containing $1\;\ccal{mg/L}$ of 2,4-D and $1\;\cal{mg/L}$ BA. The suspension cultured cell clumps could be mass propagated. Embryogenic callus were friable, but non-embryogenic callus included a lot of moisture, hence the identification between embryogenic and non-embryogenic callus as easily achieved. When embryogenic callus as cultured on half strength of MS medium containing $1\;\cal{mg/L}$ Kinetin, shoots were induced. The whole plantlet was obtained on rooting medium containing $0.5\;\cal{mg/}$ of NAA.

Studies on the Transformation of Crop Plants. IV. Biochemical Characteristics of Embryogenic Callus in Rice (곡물류의 형질전환 유도에 관한 연구 (IV) 벼 배발생 세포의 생화학적 특징)

  • 정병균
    • Journal of Plant Biology
    • /
    • v.36 no.4
    • /
    • pp.377-382
    • /
    • 1993
  • Rice (Oryza saliva L.) calli containing both embryogenic callus (EC) and non embryogenic callus (NEC) regions were initiated from the mature seed on MS medium supplemented with 2.0 mg/L 2,4-D, 0.5 mg/L kinetin. The calli were developed into two callus type which can be distinguished by visual examination depending on color and appearance. In order to illucidate the polypeptide composition between EC and NEC, the total protein extracted from two types of callus was analysed by electrophoresis. By one-dimesional anlaysis of SDS-PAGE and Isoelectric focusing, several protein bands showed quantitative and qualitative difference in each type of callus. The further analysis of the total protein with two-dimensional electrophoresis showed at least 20 EC specific protein and 10 NE specific protein. Also 3 specific protein spots showing micro heterogeneity of 90, 65, 50 kD were detected in EC, while a series of acidic heterologous protein spots were visualized in NEC.in NEC.

  • PDF

Embryogenic callus culture of Tribulus terrestris L. a potential source of harmaline, harmine and diosgenin

  • Nikam, T.D.;Ebrahimi, Mohammad Ali;Patil, V.A.
    • Plant Biotechnology Reports
    • /
    • v.3 no.3
    • /
    • pp.243-250
    • /
    • 2009
  • In the present study, a simple one medium formulation protocol for callus culture, somatic embryogenesis and in vitro production of ${\beta}-carboline$ alkaloids and diosgenin in Tribulus terrestris L. was developed. Extensive callus induction and proliferation was obtained in leaf explant on Murashige and Skoog (MS) medium supplemented with $5.0{\mu}M$ 6 benzyl adenine (BA) and $2.5{\mu}M$ ${\alpha}-naphthaleneacetic$ acid (NAA). The embryogenic callus was maintained on subculture to fresh parental medium at 4-week intervals over a period of 28 months. The frequency of embryo formation was at a maximum ($18.1{\pm}0.9$ per g of callus) on MS medium containing $5.0{\mu}M$ BA and $2.5{\mu}M$ NAA together with $75mg\;1^{-1}$ casein hydrolysate. Globular embryo developed into torpedo stage embryo under the influence of starvation. The accumulation of ${\beta}-carboline$ alkaloids (harmaline and harmine) and steroidal saponin (diosgenin) in non-embryogenic and embryogenic callus culture derived from leaf explant was compared with root, leaf, stem, and fruit of the mother plant. The embryogenic callus accumulated equivalent amounts of harmaline ($66.4{\pm}0.5{\mu}g/g$ dry weight), harmine ($82.7{\pm}0.6{\mu}g/g$ dry weight), and diosgenin ($170.7{\pm}1.0{\mu}g/g$ dry weight) to that of the fruit of T. terrestris. The embryogenic callus culture of this species might offer a potential source for production of important pharmaceuticals.

Production and Developmental Pattern of Embryogenic Callus in Oenanthe javanica ($B_{L.}$) DC. (미나리 체세포 배발생 캘러스의 획득과 발달 형태)

  • Gab Cheon KOH;Chang Soon AHN
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.5
    • /
    • pp.283-290
    • /
    • 1995
  • This experiment was canted out to obtain embryogenic callus and to understand developmental mechanism of somatic embryogenesis in Oenanthe javanica ($B_{L.}$) DC. experiments included the examination of explant source and media for embryogenic callus production and the observation of developmental pattern of embryogenic cells and non-embryogenic cells. Embryogenic calli were formed on zygotic pro-embryos together with their endosperms when they were cultured on Ms media containing 1.0mg/L 2,4-D. Embryogenic calli were also formed on the intact surface in vitro grown stem or petiole segmentsafrer 6-8 weeks of culture, whereas non-embryogenic calli were formed on cut surfaces of the stem and petiole after 2 weeks of culture. Non-embryogenic calli were rhizogenic in suspension and solid media culture.

  • PDF

Anatomical Observation of Somatic Embryogenesis in Oenanthe javanica ($B^{L}.$) DC. (미나리 체세포 배발생과정의 해부학적 관찰)

  • Gab Cheon KOH;Chang Soon AHN
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.6
    • /
    • pp.323-327
    • /
    • 1995
  • This experiment was carried out to observe the origin and developmental pattern of somatic embryos of Oenanthe javanica ($B^{L}.$) DC. The experiment included observation of embryogenic cells and their development stages by light microscope, transmission electron microscope and scanning electron microscope. The embryogenic cells, which were smaller than non-embryogenic cells in size with expanded nucleus and dense cytoplasm. When stained with hematoxylin, the embryogenic cells were readily distinguished from the non-embryogenic cells of which cell walls were stained with safranin. It was observed at somatic embryos developed from single cells on the epidermis of developing embryos or in the surface or inside of embryogenic clumps by segmentation pattern. Observation with a transmission electron microscope revealed that the embryogenic cells had dense cytoplasm expanded nucleus, small vacuoles, large amyloplasts containing starch grains, and abundant organelles including lipid bodies. Under a scanning electron microscope, embryogenic callus was shown to consist of very smaller cells than non-embryogenic cells in an orderly arrangement and covered with a net-like structure, while the non-embryogenic callus consisted of large cells, irregular in size and arrangement, and covered with a gelatin-like material.

  • PDF

Ultrastructural Characteristics of Developmental Stages During in vitro Regeneration in Citrus junos SIEB. (유자 (Citrus junos SIEB.) 의 발생단계에 따른 미세구조적 특성)

  • 박민희
    • Korean Journal of Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.237-246
    • /
    • 1995
  • In this study, the callus was induced and regenerated from the immature embryo and ultrastructural characteristics of developmental stages in Citrus junos SIEB, were investigated. The yellowish callus was induced by 5 to 6 week of culture of citrus. In proliferation callus after 6 weeks of culture, large vacuole was formed by fusion between adjacent small ones. In the non-embryogenic callus cultured for 12weeks, re-differentiated cells of callus showed the large nucleus with globular nucleus and amyloplast with large size of starches. In the embryogenic callus cltured for 14-16 weeks, the active exocytosis occurred in cells, secretory vesicles appeared on cell membrane and small particles from cytoplasm were released to intercelluar space. In the embryogenic callus cultured for 24 weeks, a sperical type of chloroplast bounded on cytoplasm by double membrane and typical grana was dispersed equally among matrix. In the normal plantlet after 26 weeks of culture, a lot of vessels and companion cells apperaed in the leaf cell of plantlet. In the normal plantlet after 30 weeks of culture, the immature leaf showed many small companion cells, sieve tubes and central vacuole. Also, the secondary vacuole protruded into the central vacuole and elongated chloroplasts near plasma membrane. In the matured plant habituated on the soil, palisada tissue composed of orderly arranged cells contained the nucleus in the center of the cell and large vacuoles on either side of the nucleus.

  • PDF

Histological Observation of Embryogenic and Non-embryogenic Callus in Long-term Subculture of Wild Viola (Viola patrinii DC.) (흰제비꽃 배양세포에 있어서 분화세포와 미분화세포 조직의 비교 관찰)

  • 정용모;손병구;이재헌;서정해;정정한;권오창
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.3
    • /
    • pp.233-238
    • /
    • 2000
  • To obtain a basic information of the development of Genus Viola, morphological and histological observation of in vitro calli and cells in Viola culture cells were investigated. There were two callus types obtained by long term subculture of wild viola (Viola partrinii DC. ) petiole callus. One was friable callus - soft and pale green in color and small cells in size, and the other was compact callus - compact and deep bluish green in color, large cells in size. In scanning electron microscopic observation, friable callus was composed of voculated cell around small. cell clump, while compact callus was composed of cells filled with protoplasm Somatic embryogenesis was observed from suspension culture of the compact callus.

  • PDF