• 제목/요약/키워드: non-contact laser measurement

검색결과 107건 처리시간 0.027초

Acquisition Model for 3D Shape Measurement Data

  • Park, Jong-Sik;Jang, Wang-Jin;Lee, Seong-Beom;Park, Chan-Seok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권4호
    • /
    • pp.16-21
    • /
    • 2008
  • The demand for three-dimensional (3D) shape measurements is increasing in a variety of fields, including the manufacture of molds and dies. The most popular technology for 3D shape measurement is the coordinate measuring machine (CMM) with a contact trigger probe. Although a CMM provides a high degree of accuracy, it is inefficient due to its long measuring time. It also has difficulty measuring soft objects that can be deformed by the touch of the contact probe. In addition, a CMM cannot digitize areas that are difficult to reach, and cannot capture very minute details on the surface of complex parts. For these reasons, optical non-contact measurement techniques are receiving more attention since they eliminate most of the problems associated with contact methods. Laser scanning is emerging as one of the more promising non-contact measurement techniques. This paper describes various acquisition considerations for laser scanning, including the accuracy of the 3D scan data, which depends on the charge-coupled device (CCD) gain and noise. The CCD gain and noise of a 3D laser scanner are varied while keeping the other conditions constant, and the measurement results are compared to the dimensions of a standard model. The experimental results show that a considerable time savings and an optimum degree of accuracy are possible by selecting the proper CCD gain and noise.

레이저 계측에 의한 순알루미늄 용접부의 스트레인 측정 (The Strain Measurement of Pure Aluminum Welded Zone by the Laser System)

  • 성백섭;차용훈;이연신
    • Journal of Welding and Joining
    • /
    • 제20권2호
    • /
    • pp.71-76
    • /
    • 2002
  • Currently knowledge of strain in welds has mainly been obtained from strain gage method; that is directly attaching the gage to the most of the material. The very flew non-contact methods are still in the early stage. One of the non-contact methods is by the use of the laser that has high-level of the accuracy for the measurement, and this laser also has excellent characteristics on which many studies for its applications are focused throughout the many fields. The paper is on the measurement of the strain caused by the characteristics and the temperature changes of the GTA welded zone employed with 3D ESPI system that is functionally modified through the laser ESPI system. This system may be applied the steel plate such as for the electronics, chemistry, flood instrument and electronic appliances.

레이저 응용계측에 의한 용접부 스트레인 측정 (The Strain Measurement of Butt Welded Zone by the Laser System)

  • 성백섭;차용훈;박창언;김일수;김덕중;이연신;김인주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.119-124
    • /
    • 2001
  • Currently knowledge of strain in welds has mainly been obtained form strain gaging method:; that is directly attaching most of the material to the gate. The very few non-contact method are still in the early stage. One of the non-contact methods is by the use of the laser that has high-level of the accuracy for the measurement, and this laser also has excellent characteristics on which many studies for its applications are focused throughout the many fields. The dissertation is on the measurement of the strain caused by the characteristics and the temperature changes of the TIG welded zone which is used with 3D ESPI system that is functionally modified through the laser ESPI system. This system employed the aluminum sheet-metal which are mainly used for the steel plate such as for the electronics, chemisry, food instrument and electronic appliances.

  • PDF

레이저 계측에 의한 맞대기 용접부의 스트레인 측정 (The Strain Measurement of Butt Welded Zone by the Laser System)

  • 성백섭;차용훈;박창언;김일수;김덕중;이연신;손준식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.155-161
    • /
    • 2001
  • Currently knowledge of strain in welds has mainly been obtained from strain gaging method; that is directly attaching most of the material to the gage. The very few non-contact method are still in the early stage. One of the non-contact methods is by the use of the laser that has high-level of the accuracy for the measurement, and this laser also has excellent characteristics on which many studies for its applications are focused throughout the many fields. The dissertation is on the measurement of the strain caused by the characteristics and the temperature changes of the TIG welded zone which is used with 3D ESPI system that is functionally modified through the laser ESPI system. This system employed the aluminum sheet-metal which are mainly used for the steel plate such as for the electronics, chemistry, food instrument and electronic appliances.

  • PDF

레이저 간섭계를 이용한 곡률반경 측정에 관한 연구 (A Study on Curvature Radius Measurement Using Laser Interferometer)

  • 이지용;김민주;이승수;전언찬
    • 한국공작기계학회논문집
    • /
    • 제13권6호
    • /
    • pp.34-40
    • /
    • 2004
  • This paper presents studies on curvature radius measurement using the laser interferometer. It is a general practice to measure to $10^{-10}$m in length with the recent improvement and innovations in measurement technology and the processor used. The measurement methods can generally be categorized as these two: the contactual method and non-contactual method; and in this study, we will find ways to lower the cost for a CMM, or a coordinate measurement machine, and try to find an alternative. Furthermore, we will discuss some of the ways to improve the non-contactual measurement methods-optical interferometer method and the optical triangulation method. We will measure an object using a laser distance measuring device and Set the Point-contact result with the ball-bearing type and line-contact result with the bearing type, to decide on which probe type will be used.

레이저센서를 이용한 비접촉식 두께자동측정기 개발 (Development of Automated Non-contact Thickness Measurement Machine using a Laser Sensor)

  • 조경철;김수연;신기열
    • 한국기계가공학회지
    • /
    • 제14권2호
    • /
    • pp.51-58
    • /
    • 2015
  • In this study, we developed an automated non-contact thickness measurement machine that continuously and precisely measures the thickness and warp of a PCB product using a laser sensor. The system contains a measurement part to measure the thickness in real time automatically according to the set conditions with an alignment supply unit and unloading unit to separate OK and NG products. The measurement machine was utilized to evaluate the performance at each step to minimize measurement error. At the zero setting for the initial setup, the standard deviation of the 216 samples was determined to be $5.52{\mu}m$. A measurement error of 0.5mm and 1.0mm as a standard sample in the measurement accuracy assessment was found to be 2.48% and 2.28%, respectively. In the factory acceptance test, the standard deviation of 1.461mm PCB was measured as $28.99{\mu}m$, with a $C_{pk}$ of 1.2. The automatic thickness measurement machine developed in this study can contribute to productivity and quality improvement in the mass production process.

서모컬러를 이용한 회전 디스크의 레이저 온도 측정 (Laser Based Temperature Measurement of Rotating Disk Using Thermocolor)

  • 나원휘;유재천
    • 센서학회지
    • /
    • 제22권1호
    • /
    • pp.49-53
    • /
    • 2013
  • In this paper, we proposed a laser-based non-contact temperature measuring method for high speed rotating polycarbonate (PC) disk using transparency change of thermocolor. The thermocolor has abilities to change color and transparency due to a change in temperature. The thermocolor is applied on one side of polyvinylidene fluoride (PVDF) membrane. The thermocolor applied membrane is attached to inside of reaction chamber in disk. An optical system consisted of a laser beam radiator and a laser photometer is installed. Laser is irradiated at the bottom side of disk and the transmitted laser beam is detected by the laser photometer at the opposite side of disk. During the disk is rotating, laser is irradiated and detected simultaneously. The laser photometer senses the transmitted laser power and generates voltage as output. The temperature of disk can be detected during the disk is rotating up to 3000 RPM.

윙립 두께 측정용 비접촉식 검사 시스템에 관한 실험적 연구 (Experimental Study on Non-contact Type Inspection System for Wing Rib Thickness Measurement)

  • 이인수;김해지;안명섭
    • 한국기계가공학회지
    • /
    • 제13권6호
    • /
    • pp.104-110
    • /
    • 2014
  • This paper presents a non-contact inspection system for automatically measuring the thickness of an aircraft wing rip product. In order to conduct the inspection of the wing rib thickness automatically, a non-contact laser displacement sensor, end-effector, and a robot were selected for use. The non-contact type inspection system was evaluated by measuring the measurement deviation of the rotation direction of a C-type yoke end-effector and the transfer direction of a V-slim end-effector. In addition, the non-contact inspection system for wing rib thickness measurements was validated through thickness measurements of a web, flange, and stiffener.

Preliminary Study of the Measurement of Foreign Material in Galvanic Corrosion Using Laser Ultrasonic

  • Hong, Kyung Min;Kang, Young June;Park, Nak Kyu;Choi, In Young
    • Journal of the Optical Society of Korea
    • /
    • 제17권4호
    • /
    • pp.323-327
    • /
    • 2013
  • A laser ultrasonic inspection system has the advantage of nondestructive testing. It is a non-contact mode using a laser interferometer to measure the vertical displacement of the surface of a material caused by the propagation of ultrasonic signals with the remote ultrasonic generated by laser. After raising the ultrasonic signal with a broadband frequency range using a pulsed laser beam, the laser beam is focused to a small point to measure the ultrasonic signal because it provides an excellent measurement resolution. In this paper, foreign materials are measured by a non-destructive and non-contact method using the laser ultrasonic inspection system. Mixed foreign material on the corroded part is assumed and the laser ultrasonic experiment is conducted. An ultrasonic wave is generated by pulse laser from the back of the specimen and an ultrasonic signal is acquired from the same location of the front side using continuous wave laser and Confocal Fabry-Perot Interferometer (CFPI). The characteristic of the ultrasonic signal of existing foreign material is analyzed and the location and size of foreign material is measured.