• Title/Summary/Keyword: non-composite

Search Result 1,570, Processing Time 0.033 seconds

Modelling of headed stud in steel-precast composite beams

  • El-Lobody, Ehab;Lam, Dennis
    • Steel and Composite Structures
    • /
    • v.2 no.5
    • /
    • pp.355-378
    • /
    • 2002
  • Use of composite steel construction with precast hollow core slabs is now popular in the UK, but the present knowledge in shear capacity of the headed shear studs for this type of composite construction is very limited. Currently, all the information is based on the results obtained from experimental push-off tests. A finite element model to simulate the behaviour of headed stud shear connection in composite beam with precast hollow core slabs is described. The model is based on finite element method and takes into account the linear and non-linear behaviour of all the materials. The model has been validated against the test results, for which the accuracy of the model used is demonstrated. Parametric studies showing the effect of the change in transverse gap size, transverse reinforcement diameter and in-situ concrete strength on the shear connection capacity are presented.

Analysis of rigid and semi-rigid steel-concrete composite joints under monotonic loading - Part II: Parametric study and comparison with the Eurocode 4 proposal

  • Amadio, C.;Fragiacomo, M.
    • Steel and Composite Structures
    • /
    • v.3 no.5
    • /
    • pp.371-382
    • /
    • 2003
  • This paper analyses the response of rigid and semi-rigid steel-concrete composite joints under monotonic loading. The influence of some important parameters, such as the presence of column web stiffening and the mechanical properties of component materials, is investigated by using a three-dimensional finite element modelling based on the Abaqus code. Numerical and experimental responses of different types of composite joints are also compared with the analytical results obtained using the component approach proposed by Eurocode 4. The results obtained with this approach generally fit well with the numerical and experimental values in terms of strength. Conversely, some significant limits arise when evaluating initial stiffness and non-linear behaviour of the composite joint.

Photovoltaic Performance of Dye-sensitized Solar Cells assembled with Hybrid Composite Membrane based on Polypropylene Non-woven Matrix

  • Choi, Yeon-Jeong;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.605-608
    • /
    • 2011
  • Hybrid composite membranes were prepared by coating poly(ethylene oxide) and $SiO_2$ particles onto the porous polypropylene nonwoven matrix. Gel polymer electrolytes prepared by soaking the hybrid composite membranes in an organic electrolyte solution exhibited ionic conductivities higher than $1.1{\times}10^{-3}Scm^{-1}$ at room temperature. Dyesensitized solar cell (DSSC) employing the hybrid composite membrane with PEO and 10 wt % $SiO_2$ exhibited an open circuit voltage of 0.77 V and a short circuit current of 10.78 $mAcm^{-2}$ at an incident light intensity of 100 $mWcm^{-2}$, yielding a conversion efficiency of 5.2%. DSSC employing the hybrid composite membrane showed more stable photovoltaic performance than that of the DSSC assembled with liquid electrolyte.

A Study on the Structural Behavior of the Composite Slabs using the Metal Form Deck Plate (일반거푸집용 데크플레이트를 이용한 합성슬래브의 구조적 거동에 관한 연구)

  • KWON, Yong Keun;KANG, Do An;CHOI, Sung Mo;EOM, Chul Hwan;CHOI, Oan Chul;MOON, Tae Sup;KIM, Kyu Suk;KIM, Duck Jae;KIM, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.67-78
    • /
    • 1996
  • This paper provides the results of a study on the structural behavior of the composite slabs using the metal form deck plate. Cold-formed steel deck sections are used in many composite floor slab applications wherein the steel deck serves not only as the form for the concrete during construction but also as the principal tensile reinforcement for the bottom fiber of the composite slab. A total of 16 specimens are tested to clarify the composite action between the concrete and metal deck plate and to find the method to increase the composite effect, whether or not non-slip bars are used. The test results are summarized for the shear-bond capacities, deformation capacities, and failure modes for the specimens.

  • PDF

Characteristics of Fatigue Life Distribution for Carbon/Epoxy Composite Laminates (탄소섬유/에폭시 복합적층판의 피로수명 분포특성)

  • 김영기;박병준;김재훈;이영신;전제춘
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.119-123
    • /
    • 2000
  • The characteristics of fatigue life distribution for Carbon/epoxy composite laminates was investigated under tension-tension loading(R=0.1). The statistical nature of the fatigue life of the composite materials was analyzed by Weibull, normal, lognormal distributions As a result, it was observed that the correlation between the experimental results and the theoretical predictions for the fatigue life is good. The distribution of the static ultimate strength has the characteristic of lognormal distribution and distribution of the fatigue life has characteristics of the weibull distribution.

  • PDF

Practical design guidlines for semi-continuous composite braced frames

  • Liew, J.Y. Richard;Looi, K.L.;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.213-230
    • /
    • 2001
  • This paper presents a simplified approach for the design of semi-continuous composite beams in braced frames, where specific attention is given to the effect of joint rotational stiffness. A simple composite beam model is proposed incorporating the effects of semi-rigid end connections and the nonprismatic properties of a 'cracked' steel-concrete beam. This beam model is extended to a sub-frame in which the restraining effects from the adjoining members are considered. Parametric studies are performed on several sub-frame models and the results are used to show that it is possible to correlate the amount of moment redistribution of semi-continuous beam within the sub-frame using an equivalent stiffness of the connection. Deflection equations are derived for semi-continuous composite beams subjected to various loading and parametric studies on beam vibrations are conducted. The proposed method may be applied using a simple computer or spreadsheet program.

Fatigue Life Analysis of Composite Materials (복합재료의 피로수명 해석)

  • 이창수;황운봉;박현철;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.268-271
    • /
    • 1999
  • Fatigue life Prediction is investigated analytically based on the fatigue modulus concept. Fatigue modulus degradation rate at any fatigue cycle was assumed as a power function of number of fatigue cycles. New stress function describing the relation of initial fatigue modulus and elastic modulus was used to account for material non-linearity at the first cycle. It was assumed that fatigue modulus at failure is proportional to applied stress level. A new fatigue life prediction equation as a function of applied stress is proposed. The prediction was verified experimentally using cross-ply carbon/epoxy laminate (CFRP) tube.

  • PDF

Fabrication and Investigation of Composite Made of Graphite, SiC, Mullite and Aluminum

  • Motaman, A.;Amin, S.A.;Jahangir, A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1071-1074
    • /
    • 2006
  • Fabrication and investigation of composite made of graphite, SiC, mullite and aluminum as the additive are the aim of this project. Aluminum acts as an anti-oxidant. SiC is a non-metallic anti-oxidant that increases composite strength. Different compositions with influent percents of aluminum have been selected to determine product specifications by XRD, SEM and STA methods. Results show that the composition of 40wt% graphite-20% SiC- 20% mullite-20% aluminum is a more robust and occurs at elevated temperatures than other graphite combustion composites.

  • PDF

Structural Performance of Stud Shear Connections using SHCC between Existing School Building Frame and Seismic Retrofitting Elements (기존 학교건물 골조와 내진보강요소 일체화를 위한 변형경화형 시멘트 복합체를 적용한 스터드 전단 접합부의 구조성능)

  • Kim, Sung-Ho;Yun, Hyun-Do
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.20 no.4
    • /
    • pp.35-43
    • /
    • 2013
  • Some results of experimental investigation conducted to assess the effect of cement composite strength and ductility on the shear behavior and crack-damage mitigation of stud connections between existing reinforced concrete frame in school buildings and seismic strengthening elements from cyclically direct shear tests are described. The cement composite strengths include 50 for medium strength and 70 MPa for high strength. Two types of cement composites, strain-hardening cement composite (SHCC) and non-shrinkage mortar, are used for stud shear connection specimens. The special SHCCs are reinforced with hybrid 0.2% polyethylene (PE) and 1.3% polyvinyl alcohol (PVA) fibers at the volume fraction and exhibits tensile strain capacity ranging from 0.2 to 0.5%. Test result indicates that SHCC improves the seismic performance and crack-damage mitigation of stud shear connections compared with stud connections with non-shrinkage mortar. However, the performance enhancement in SHCC stud connections with transverse and longitudinal reinforcements is less notable for those without additional reinforcement.

Analysis of Folded Plate Structures Composed of [$45^{\circ}$/$-45^{\circ}$/$-45^{\circ}$/$90^{\circ}$/$45^{\circ}$/$45^{\circ}$/$-45^{\circ}$]r Type Laminated Composites Plates ($45^{\circ}$/$-45^{\circ}$/$-45^{\circ}$/$90^{\circ}$/$45^{\circ}$/$45^{\circ}$/$-45^{\circ}$r 복합재료 적층판으로 구성된 사각단면 절판구조물의 구조해석)

  • 김덕현;이정호;홍창우;이남주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.93-96
    • /
    • 2000
  • The theory of non-prismatic folded plate structures was reported by the senior author in 1965 and 1966. Fiber reinforced composite materials are strong in tension. The structural element for such tension force is very thin and weak against bending because of small bending stiffnesses. Naturally, the box type section is considered as the optimum structural configuration because of its high bending stiffnesses. Such structures can be effectively analyzed by the folded plate theory with relative ease. The "hollow" bending member with uniform cross-section can be treated as prismatic folded plates which is a special case of the non-prismatic folded plates. Tn this paper, the result of analysis of a folded plates with one box type uniform cross-section is presented. Each plate is made of composite laminates with fiber orientation of [ABBCAAB]$_r$, with A=-B=$45^{\circ}$, and C=$90^{\circ}$. The influence of the span to depth ratio is also studied. When this ratio is 5, the difference between the results of folded plate theory and beam theory is 1.66%. is 1.66%.

  • PDF