• Title/Summary/Keyword: non-cement binder

Search Result 43, Processing Time 0.027 seconds

Development of Eco-friendly Cement using Reverse Osmosis Brine Water and Metakaolin (역삼투압 농축수와 메타카올린을 사용한 친환경 시멘트의 개발)

  • Kim, Taewan;Han, Ki-Bong;Kim, Do-Hyung;Seo, Ki-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.216-222
    • /
    • 2021
  • This is an experiment to complement new ways of using concentrated water discharged from the seawater desalination plant. In this study, metakaolin, which has excellent chloride ion immobilization effect, was used as the main binder, and 10% and 20% of calcium oxide were substituted with the activator. In addition, tap-water(TW) and reverse osmosis brine water(RW) were used as mixed water. As a result of the experiment, the mixture using RW showed higher compressive strength than TW. It also showed low water absorption and high density. In the mixture using RW as mixed water, a hydration reaction substance called Friedel's salt could be observed. Considering the corrosion problem of steel, RW is considered to be applicable to products such as non-reinforced concrete, brick, and curb stone. Through this study, it is thought that it is meaningful to propose a new application method other than the ocean release of RW.

Modified-stoichiometric Model for Describing Hydration of Alkali-Activated Slag (알칼리 활성 슬래그의 수화에 대한 개선된 화학양론적 모델)

  • Abate, Selamu Yihune;Park, Solmoi;Song, Keum-Il;Lee, Bang-Yeon;Kim, Hyeong-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • The present study proposes the modified-stoichiometric model for describing hydration of sodium silicate-based alkaliactivated slag(AAS), and compares the results with the thermodynamic modelling-based calculations. The proposed model is based on Chen and Brouwers(2007a) model with updated database as reported in recent studies. In addition, the calculated results for AAS are compared to those for hydrated portland cement. The maximum difference between the proposed model and the thermodynamic calculation for AAS was at most 20%, and the effects of water-to-binder ratio and activator dosages were identically described by both approaches. In particular, the amount of non-evaporable water was within 10% difference, and was in excellent agreement with the experimental results. Nevertheless, notable deviation was observed for the chemical shrinkage, which is largely dependent on the volume of hydrates and pores.

Theoretical Analysis of Critical Chloride Content in (Non)Carbonated Concrete Based on Characteristics of Hydration of Cement (시멘트 수화 특성 및 탄산화를 고려한 콘크리트의 임계 염소이온량에 대한 해석 기법)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.367-375
    • /
    • 2007
  • Critical chloride content for corrosion initiation is a crucial parameter in determining the durability and integrity of reinforced concrete structures, however, the value is still ambiguous. Most of the studies reporting critical threshold chloride content have involved the experimental measurement of the average amount of the total chloride content at arbitrary time. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on critical threshold chloride content. Furthermore, the studies have tried to define the critical chloride content within the scope of their experimental concrete mix proportion at arbitrary time. However, critical chloride content for corrosion initiation is known to be affected by a lot of factors including cement content, type of binder, chloride binding, concentration of hydroxyl ions, and so on. It is necessary to define the unified formulation to express the critical chloride content for various mix proportions of concrete. The purpose of this study is to establish an analytical formulation of the critical chloride content of concrete. In this formulation, affecting factors, such as mix proportion, environment, chemical evolution of pore solution with elapsed time, carbonation of concrete and so on are taken into account. Based on the Gouda's experimental results, critical chloride content is defined as a function of $[Cl^-]$ vs. $[OH^-]$ in pore solution. This is expressed as free chloride content with mass unit to consider time evolution of $[OH^-]$ content in pore solution using the numerical simulation programme of cementitious materials, HYMOSTRUC. The result was compared with other experimental studies and various codes. It is believed that the approach suggested in this study can provide a good solution to determine the reasonable critical chloride content with original source of chloride ions, for example, marine sand at initial time, and sea water penetration later on.