• Title/Summary/Keyword: non-axisymmetric

Search Result 211, Processing Time 0.025 seconds

AC loss of HTS magnet for AMR refrigerator using magnetic field formulation and edge element in cylindrical coordinates

  • Kim, Seokho;Park, Minwon;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • AMR (Active Magnetic Regenerative) refrigerators require the large variation of the magnetic field and a HTS magnet can be used. The amount of AC loss is very important considering the overall efficiency of the AMR refrigerator. However, it is very hard to estimate the precise loss of the HTS magnet because the magnetic field distribution around the conductor itself depends on the coil configuration and the neighboring HTS wires interact each other through the distorted magnetic field by the screening current Therefore, the AC loss of HTS magnet should be calculated using the whole configuration of the HTS magnet with superconducting characteristic. This paper describes the AC loss of the HTS magnet by an appropriate FEM approach, which uses the non-linear characteristic of HTS conductor. The analysis model is based on the 2-D FEM model, called as 'magnetic field formulation and edge-element model', for whole coil configuration in cylindrical coordinates. The effects of transport current and stacked conductors on the AC loss are investigated considering the field-dependent critical current. The PDE model of 'Comsol multiphysics' is used for the FEM analysis with properly implemented equations for axisymmetric model.

Nature of the Wiggle Instability of Galactic Spiral Shocks

  • Kim, Woong-Tae;Kim, Yonghwi;Kim, Jeong-Gyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.37.2-37.2
    • /
    • 2014
  • Gas in disk galaxies interacts nonlinearly with a underlying stellar spiral potential to form galactic spiral shocks. Numerical simulations typically show that these shocks are unstable to the wiggle instability, forming non-axisymmetric structures with high vorticity. While previous studies suggested that the wiggle instability may arise from the Kelvin-Helmholtz instability or orbit crowding of gas elements near the shock, its physical nature remains uncertain. It was even argued that the wiggle instability is of numerical origin, caused by the inability of a numerical code to resolve a shock that is inclined to numerical grids. In this work, we perform a normal-mode linear stability analysis of galactic spiral shocks as a boundary-value problem. We find that the wiggle instability originates physically from the potential vorticity generation at a distorted shock front. As the gas follows galaxy rotation, it periodically passes through multiple shocks, successively increasing its potential vorticity. This sets up a normal-mode that grows exponentially, with a growth rate comparable to the orbital angular frequency. We show that the results of our linear stability analysis are in good agreement with the those of local hydrodynamic simulations of the wiggle instability.

  • PDF

The Effect of Trailing Wake Asymmetry on a Propeller Blade Forces in Inclined Inflow (비대칭 후류를 고려한 경사축 추진기의 유동해석)

  • Sang-Woo Pyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.24-31
    • /
    • 1998
  • Unsteady propeller blade forces arising from shaft inclination have been found to be an important contribution tn total blade forces. The position of the wake relative to a blade oscillates with the first blade frequency, thus giving rise to unsteady blade forces which is significant relative to the forces produced directly by flow inclination. In order to find a wake geometry due to shaft inclination, a non-axisymmetric wake model is developed and applied to a specific case, which has experimental values. Predicted cavity shapes and unsteady forces acting on the blades of an inclined shaft propeller are compared to those predicted by other numerical methods, as well as those measured in experiments.

  • PDF

Gas Dynamical Evolution of Central Regions of Barred Galaxies

  • Seo, U-Yeong;Kim, Ung-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.55.1-55.1
    • /
    • 2011
  • We investigate dynamical evolution of gas in barred galaxies using a high-resolution, grid-based hydrodynamic simulations on two-dimensional cylindrical geometry. Non-axisymmetric gravitational potential of the bar is represented by the Ferrers ellipsoids independent of time. Previous studies on this subject used either particle approaches or treated the bar potential in an incorrect way. The gaseous medium is assumed to be infinitesimally-thin, isothermal, unmagnetized, and initially uniform. To study the effects of various environments on the gas evolution, we vary the gas sound speed as well as the mass of a SMBH located at the center of a galaxy. An introduction of the bar potential produces bar substructure including a pair of dust lane shocks, a nuclear ring, and nuclear spirals. The sound speed affects the position and strength of the bar substructure significantly. As the sound speed increases, the dust lane shocks tend to move closer to the bar major axis, resulting in a smaller-size nuclear ring at the galactocentric radius of about 1 kpc. Nuclear spirals that develop inside a nuclear ring can persist only when either sound speed is low or in the presence of a SMBH; they would otherwise be destroyed by the ring material with eccentric orbits. The mass inflow rates of gas toward the galactic center is also found to be proportional to the sound speed. We find that the sound speed should be 15 km/s or larger if the mass inflow rate is to explain nuclear activities in Seyfert galaxies.

  • PDF

Development of M10 Hex Head Bolt Multi-stage Die Design and Forging Analysis Automation Program (M10 육각 머리 볼트 다단 금형 설계 및 단조 성형해석 자동화 프로그램 개발)

  • M. Oh;S. Yi;J.M. Choi;S. Hong
    • Transactions of Materials Processing
    • /
    • v.33 no.5
    • /
    • pp.341-347
    • /
    • 2024
  • Many studies have focused on the optimal design of multi-stage forging molds. For optimal design progress, geometry parameters must be automatically modified, and the updated analysis file delivered. However, existing automation processes set and change parameters at the analysis input file stage, limiting them to simpler tasks like 2D shapes and basic process conditions (e.g., friction, elasticity), making it challenging to handle 3D asymmetric shapes. To address these limitations, an automated program was developed that modifies geometry directly in the CAD model, enabling the automation of complex 3D and asymmetrical shapes. In this process, a 3D mold is generated immediately after the drawing is input, automating the design of both the product and the mold without manual intervention. The program's effectiveness was demonstrated in the design and forging analysis of a multi-stage mold for M10 hex head bolts. This fully automated program reduced preprocessing time by approximately 6.7 times and successfully performed sensitivity analysis without manual input.

Spreading Dynamics of an Ellipsoidal Drop Impacting on a Heated Substrate (고온으로 가열된 고체 표면과 충돌하는 타원형 액적의 퍼짐 거동)

  • Yun, Sungchan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.205-209
    • /
    • 2017
  • Unlike spherical drop impact, ellipsoidal drop impact can control the bouncing height on a heated surface by significantly altering impact behavior. To scrutinize the effect of the aspect ratio (AR) of the drop on the bounce suppression, in this study, non-axisymmetric spreading behaviors are observed from two side views and characterized based on the spreading width of the drop for horizontal principal axes. In addition, the maximum spreading width is investigated for various ARs. The results show that as the AR increases, the maximum spreading width of the minor axis increases, whereas that of the major axis shows no significant variation. In the regime of high AR and high impact velocity, liquid fragmentations by three parts are observed during bouncing. These fragmentations are discussed in this work. The hydrodynamic features of ellipsoidal drop impact will help understand bouncing control on non-wetting surfaces for several applications, such as self-cleaning and spray cooling.

Prediction of Stress Distribution in the Ceramic Femoral Head after Total Hip Replacement (인공고관절 치환술 후 세라믹 대퇴골두에서 발생하는 응력분포 예측)

  • Han, Sung-Min;Chu, Jun-Uk;Song, Kang-Il;Park, Sung-Hee;Choi, Jae-Bong;Kim, Jung-Sung;Suh, Jun-Kyo Francis;Choi, Kui-Won;Youn, In-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.680-685
    • /
    • 2012
  • Ceramic femoral heads are now widely used in Total Hip Replacement (THR). Due to their high biocompatibility and low ductility, ceramic femoral heads are considered to be suitable for young and active patients. However, as in testing the mechanical stability of the femoral head, the conventional proof test (standard ISO 7206-10) has its limit of showing axisymmetric stress distribution on the contact surface, while non-uniformed stress distribution is expected after THR. Since non-uniformed stress distribution can result in the increased probability of ceramic femoral head fracture, it is considerable to evaluate the stress distribution in vivo-like conditions. Therefore, this study simulated the ceramic femoral heads under in vivo-like conditions using finite element method. The maximum stress decreased when increasing the size of the femoral head and stress distribution was concentrated on superior contact surface of the taper region.

Evaluation of Vertical Bearing Capacity for Bucket and Shallow Foundations Installed in Sand (사질토 지반에 설치된 버킷기초 및 얕은기초의 수직지지력 산정)

  • Park, Jeongseon;Park, Duhee;Jee, Sunghyun;Kim, Dongjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.33-41
    • /
    • 2015
  • The vertical bearing capacity of a bucket foundation installed in sand can be calculated as sum of the skin friction and end bearing capacity. However, the current design equations are not considering the non-associated flow characteristics of sand and the reduction in the skin friction and increase in the end bearing capacity when the vertical load is applied. In this study, we perform two-dimensional axisymmetric finite element analyses following non-associated flow rule and calculate the vertical bearing capacity of circular bucket foundation of various sizes installed in sand of different friction angles. After calculating the skin friction and end bearing force at the ultimate state, design equations are derived for each. The skin friction of bucket foundation is shown significantly small compared to the end bearing capacity. Considering the difference with the available design equation for piles, it is recommended that the equation for piles is used for the bucket foundation. A new shape-depth factor ($s_q{\cdot}d_q$) for bucket foundation is recommended which also accounts for the increment of the end bearing capacity due to skin friction. Additionally, the shape and depth factor of embedded foundation proposed from the associated flow rule can overestimate the bearing capacity in sand, so it is more adequate to use the shape-depth factor proposed in this study.

A Cold model experiment on the thermal convection in the czochralski silicon single crystal growth process (저융점 금속을 사용한 초크랄스키 실리콘 단결정 성장 공정의 열유동 모사 실험)

  • 이상호;김민철;이경우
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.149-156
    • /
    • 1999
  • An experimental simulation on the flow in Czochralski melt using a cold model was carried out to obtain the velocities of fluid flow which affects the oxygen concentration of Czochralski crystal growing system. Low melting point Woods metal with similar Pr number to the silicon melt was adopted as a working fluid. Local flow velocities at numerous positions in the melt were simulataneously measured in three dimension using incorporated magnet probe. The measured velocity field showed a non-axisymmetric pattern dominated by natural convection. The analysis on the correlation between data set of temperatures simultaneously measured at two melt positions showed that the values of correlation coefficients were smaller than those of previous study on the small size of silicon melt and these phenomena are believed to occur because turbulent behavior becomes stronger in large size of the melt.

  • PDF

Buckling delamination of the PZT/Metal/PZT sandwich circular plate-disc with penny-shaped interface cracks

  • Cafarova, Fazile I.;Akbarov, Surkay D.;Yahnioglu, Nazmiye
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.163-179
    • /
    • 2017
  • The axisymmetric buckling delamination of the Piezoelectric/Metal/Piezoelectric (PZT/Metal/PZT) sandwich circular plate with interface penny-shaped cracks is investigated. The case is considered where open-circuit conditions with respect to the electrical displacement on the upper and lower surfaces, and short-circuit conditions with respect to the electrical potential on the lateral surface of the face layers are satisfied. It is assumed that the edge surfaces of the cracks have an infinitesimal rotationally symmetric initial imperfection and the development of this imperfection with rotationally symmetric compressive forces acting on the lateral surface of the plate is studied by employing the exact geometrically non-linear field equations and relations of electro-elasticity for piezoelectric materials. The sought values are presented in the power series form with respect to the small parameter which characterizes the degree of the initial imperfection. The zeroth and first approximations are used for investigation of stability loss and buckling delamination problems. It is established that the equations and relations related to the first approximation coincide with the corresponding ones of the three-dimensional linearized theory of stability of electro-elasticity for piezoelectric materials. The quantities related to the zeroth approximation are determined analytically, however the quantities related to the first approximation are determined numerically by employing Finite Element Method (FEM). Numerical results on the critical radial stresses acting in the layers of the plate are presented and discussed. In particular, it is established that the piezoelectricity of the face layer material causes an increase (a decrease) in the values of the critical compressive stress acting in the face (core) layer.