• Title/Summary/Keyword: non-axisymmetric

Search Result 211, Processing Time 0.023 seconds

Simulation of Axisymmetric Flows with Swirl in a Gas Turbine Combustor (Swirl이 있는 축대칭 연소기의 난류연소유동 해석)

  • Shin, Dong-Shin;Lim, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.55-66
    • /
    • 2000
  • A general purpose program for the analysis of flows in a gas turbine combustor is developed. The program uses non-staggered grids based on finite volume method and the cartesian velocities as primitive variables. A flow inside the C-type diffuser is simulated to check the boundary fitted coordinate. The velocity profiles at cross section agree well with experimental results. A turbulent diffusion flame behind a bluff body is simulated for the combustion simulation. Simulated results show good agreement with experimental data. Finally, a turbulent flow with swirl in a gas turbine combustor was simulated. The results show two recirculating region and simulated velocity fields agree well with experimental data. The distance between two recirculating regions becomes shorter as swirl angle increases. Swirl angle changes angular momentum and streamlines in flow fields.

  • PDF

Mismatching Refinement with Domain Decomposition and Its Application to the Finite Element Analysis of the Extrusion Process (영역분할에 의한 격자세분화 기법 및 압출공정의 유한요소해석에의 적용)

  • Park, Keun;Yang, Dong-Yol
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.284-293
    • /
    • 1999
  • The rigid-plastic finite element analysis requires a large amount of computation time due to its non-linearity. For economic computation, mismatching refinement, and efficient domain decomposition method with different mesh density for each sub domain, is developed. A modified velocity alternating scheme for the interface treatment is proposed in order to obtain good convergence and accuracy. As a numerical example, the axisymmetric extrusion process is analyzed. The results are discussed for the various velocity update schemes form the viewpoint of convergence and accuracy. The three-dimen-sional extrusion process with rectangular section is analyzed in order to verify the effectiveness of the proposed method. Comparing the results with those of the conventional method of full region analysis, the accuracy and the computational efficiency of the proposed method are then discussed.

  • PDF

Electric Field Calculation in High Voltage Electrode by Combination Method (전하종첩법과 유한요소법의 결합에 의한 고전계 계산)

  • 지철근;김상태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.9
    • /
    • pp.297-304
    • /
    • 1983
  • This paper deals with the electric fileds calculation by combination of finite element method and charge simulation method. Since this method has the advantage of both F.E.M and C.S.M.the application of this method is more useful for the caleulation of non-enclosed fields, multi-dielectric fields, space charge fields and so on. On the basis of this method, computer programs for the calculation of two-demensional and axisymmetric fields were developed. This paper shows that the calculation results are accurately abtained through several examples.

  • PDF

Influence of Process Parameters on the Forming Compatibility in Composite Extrusion Rods (복합압출재료봉의 공정변수가 성형 적합성에 미치는 영향)

  • Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.80-86
    • /
    • 2009
  • This paper presents the plastic inhomogeneous deformation behavior of bimetal composite rods during the axisymmetric and steady-state extrusion process through a conical die. The rigid-plastic FE model considering frictional contact problem was used to analyze the co-extrusion process with material combinations of Cu/Al. Different cases of initial geometry shape for composite material were simulated under different conditions of co-extrusion process, which includes the interference and frictional conditions. From the simulation results, the sleeve cladding rate at the core/sleeve interface was recorded as a distribution of diameter ratio and interference conditions, which will be useful for the investigations of the bonding process during co-extrusion process. In addition, the results of the co-extrusion, connected with the results of the variations of diameter rate and average contact pressure, demonstrate a good agreement and present the possibility of describing the parameters of the plastic zones in non-uniform deformation of these type of composite materials.

Three-dimensional simulations of star formation in central region of barred-spiral galaxies

  • Seo, Woo-Young;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.39.2-39.2
    • /
    • 2016
  • The central regions of barred-spiral galaxies contain interesting gaseous structures such as dust lanes located at the leading side of the bar and nuclear rings that are sites of intense star formation. Our previous studies showed how gas structures form under the influence of a non-axisymmetric bar potential and temporal/spatial behavior of the star formation in nuclear rings. However, previous works were limited to 2-dimensional infinitesimally-thin, unmagnetized and isothermal disks. To study effects of cooling/heating, vertical motions of gas structures and magnetic field, we use Mesh-Free magneto-hydrodynamic simulation code GIZMO. We find that temporal variations of the star formation rates in the nuclear ring in the three-dimensional model are overall similar those in the previous two-dimensional results, although the former shows more violent small-scale fluctuations near the early primary peak. We will present our recent results about evolution of gaseous structures and star formation rate compare with results of previous studies.

  • PDF

A Computational Study of a Supersonic Flow with Base Bleed (Base Bleed 를 가지는 초음속 유동에 대한 수치해석적 연구)

  • Lee, Young-Ki;Kim, Heuy-Dong;Raghunathan, Srinivasan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1589-1594
    • /
    • 2004
  • A numerical analysis has been performed to give an understanding of the physics of a compressible base flow with mass bleed in a Mach 2.47 freestream. Axisymmetric, compressible mass-averaged Navier-Stokes equations are computed using a two-equation turbulence model, standard ${\kappa}-{\omega}$, and a fully implicit finite volume scheme. The mass bleed is characterized by the change in the mass flow rate of the bleed jet non-dimensionalized by the product of the base area and freestream mass flux. The result showing that there is an optimum bleed condition with maximum base pressure, leading to a minimum base drag, is clearly predicted and the validation with experimental data shows reasonable agreement.

  • PDF

Numerical Study of effects on micro-pressure wave reduction by a hood on a narrow tunnel (후드를 이용한 협소 터널 미기압파 감소 효과에 대한 수치적 연구)

  • Yun Su-Hwan;Kim Byung-Yeol;Ku Yo-Cheon;Lee Dong-ho;Kwon Hyeok-Bin;Ko Tae-hwan
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.872-877
    • /
    • 2005
  • The train entry into a tunnel generates a strong compression wave in the tunnel. The high amplitude of compression wave causes high pressure gradients that are responsible for both the aural discomfort of passengers and the impulsive acoustical wave called the miro-pressure wave. This paper provides a numerical study on effects of hood for micro'-'pressure wave reduction. An axisymmetric numerical solver, considering the cross sectional area of Korean Tilting Train eXpress, is used for a transient flow field in the tunnel. Results show that the micro-pressure wave is able to be reduced by a hood. In this results, the maximum reduction of micro--pressure wave is shown at 2L(length), 1.35D(diameter) hood around $56\%$ against the non-hood case.

  • PDF

A Numerical Study on the Bubble Noise and the Tip Vortex Cavitation Inception

  • Park, Jin-Keun;Georges L. Chahine
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.3
    • /
    • pp.13-33
    • /
    • 2003
  • This paper presents a numerical study on tip vortex cavitation inception predictions based on non-spherical bubble dynamics including splitting and jet noise emission. A brief summary of the numerical method and its validation against a laboratory experiment are presented. The behavior of bubble nuclei is studied in a tip vortex flow field at two Reynolds numbers, provided by a viscous flow solver. The bubble behavior is simulated by an axisymmetric potential flow solver with the effect of surrounding viscous flow taken into account using one way coupling. The effects of bubble nucleus size and Reynolds number are studied. An effort to model the bubble splitting at lower cavitation numbers is also described.

SECULAR EVOLUTION OF BARRED GALAXIES

  • ANN HONG BAE
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.241-248
    • /
    • 2003
  • Owing to several observational evidences and theoretical predictions for morphological evolution of galaxies, it is now widely accepted that galaxies do evolve from late types to early ones along the Hubble sequence. It is also well established that non-axisymmetric potentials of bar-like or oval mass distributions can change the morphology of galaxies significantly during the Hubble time. Here, we review the observational and theoretical grounds of the secular evolution driven by bar-like potentials, and present the results of SPH simulations for the response of the gaseous disks to the imposed potentials to explore the secular evolution in the central regions of barred galaxies.

Gravitational Wave Emission from Pulsars with Glitches

  • Kim, Jin-Ho;Lee, Hyung-Mok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.47.2-47.2
    • /
    • 2011
  • Gravitational waves from the pulsar glitch can be detected by next generation gravitational wave observatories. We investigate characteristics of the modes that can emit the gravitational waves excited by three different types of perturbations satisfying conservation of total rest mass and angular momentum. These perturbations mimic the pulsar glitch theories i.e., change of moment of inertia due to the star quakes or angular momentum transfer by vortex unpinning at crust-core interface. We carry out numerical hydrodynamic simulations using the pseudo-Newtonian method which makes weak field approximation for the dynamics, but taking all forms of energies into account to compute the Newtonian potential. Unlike other works, we found that the first and second strongest modes that give gravitational waves are $^2p_1$ and $H_1$ rather than$^2f$. We also found that vortex unpinning model excites the inertial mode in quadrupole moment quite effectively. The inertial mode may evolve into the non-axisymmetric r-mode.

  • PDF