• 제목/요약/키워드: non-Newtonian viscosity

검색결과 141건 처리시간 0.021초

탄소섬유 원재료로서 콜타르로부터 제조된 메조페이스 핏치의 유변학적 거동 (Rheological Behaviors of Mesophase Pitches Prepared from Coal Tar Pitch as Carbon Fiber Precursor)

  • 이영석;김태진
    • 공업화학
    • /
    • 제10권5호
    • /
    • pp.690-695
    • /
    • 1999
  • 석탄핏치로부터 제조된 메조페이스 핏치의 실험적 연구가 용융상태에서의 유변학적 거동을 알아보고자 수행되었다. 겉보기 점도, 전단변형율, 전단응력, 퀴놀린 불용분(QI), 연화점(SP) 변화 등을 조사하여 다음과 같은 결론을 얻었다. 중합시에 메조페이스의 적당한 함량을 증가시키기 위한 조건으로는 열처리 시간이 5시간, 촉매농도는 3%, 반응온도는 $420^{\circ}C$로 나타났다. 온도상승에 따른 겉보기 점도 변화는 핏치의 열처리 조건에 따라 달라지는데 열처리 온도가 높을수록, 열처리 시간이 길어질수록, 메조페이스 함량이 증가할수록 커지며, 유동도는 작아진다. $270^{\circ}C$ 이후의 용융 메조페이스 핏치의 유변학적 거동은 $375^{\circ}C$ 이하에서는 Newtonian fluid의 성질을 띠며 그 이상에서는 Non Newtonian fluid의 거동을 보이며 Casson 모델에 잘 일치됨을 알 수 있었다.

  • PDF

3차원 흐름 모사와 비뉴톤 유체모델을 이용한 고분자 압출 다이의 형상 최적화 (Shape optimization of polymer extrusion die using three-dimensional flow simulation and non-Newtonian fluid models)

  • 나수연;이태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1754-1757
    • /
    • 1997
  • Three-dimensional optimum design of coat-hanger die is performed using power-law and Carreau models. It is found that the three-dimensional optimum design algorithm shows good convergence with the non-Newtonian fludis. the nore realistic optimum design is accomplished by employing Carreau model with the three-dimensional design method. The effect of vixcosity modles is investigated by comparing the optimum manifold profiles and flow rate distributions of power-law and Carreau modles. Through the accurated viscosity representation of Carreau model, the effect of total flow rate on the optimum manifold profile is investigated.

  • PDF

목분 충진 고분자 용융체의 압출다이 내 유동 및 열전달에 관한 수치해석 (Numerical Analysis on the Flow and Heat Transfer Characteristic of Wood-flour-filled Polypropylene Melt in an Extrusion Die)

  • 고승환;박형규;송명호;김찬중
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.311-318
    • /
    • 2001
  • A three-dimensional numerical analysis of the flow and heat transfer characteristic of wood-flour-filled polypropylene melt in an extrusion die was carried out Used for this analysis were Finite Concept Method based on FVM, unstructured grid and non-Newtonian fluid viscosity model. Temperature and flow fields are closely coupled through temperature dependent viscosity and viscous dissipation. With large Peclet, Nahme, Brinkman numbers, viscous heating caused high temperature belt near die housing, Changing taper plate thickness and examining some predefined parameters at die exit investigated the effect of taper plate on velocity and temperature uniformities. In the presence of taper plate, uniformity at die exit could be improved and there existed an optimum thickness to maximize it.

  • PDF

한계전단응력형태의 Bair & Winer 리올로지 모델을 사용한 선접촉 탄성유체윤활해석 (Elastohydrodynamic Lubrication of Line Contacts Incorporating Bair & Winer's Limiting Shear Stress Rheological Model)

  • 이희성;양진승
    • Tribology and Lubricants
    • /
    • 제14권1호
    • /
    • pp.85-93
    • /
    • 1998
  • The Bair & Winer's limiting shear stress rheological model is incorporated into the Reynolds equation to successfully predict the traction and film thickness for an isothermal line contact using the primary rheological properties. The modified WLF viscosity model and Barus viscosity model are also adapted for the realistic prediction of EHD tractional behavior. The influences of the limiting shear stress and slide-roll ratio on the pressure spike, film thickness, distribution of shear stress and nonlinear variation of traction are examined. A good agreement between the disc machine experiments and numerical traction prediction has been established. The film thickness due to non-Newtonian effects does not deviate significantly from the fdm thicknesss with Newtonian lubricant.

전단율에 의존적인 비뉴턴 유체의 열전도율이 열전달 향상에 미치는 영향 (The effect of the shear-rate dependent thermal conductivity of non-Newtonian fluids on the heat transfer enhancement)

  • 신세현;이성혁;손창현
    • 대한기계학회논문집B
    • /
    • 제20권5호
    • /
    • pp.1717-1724
    • /
    • 1996
  • The present study investigates the effect of the shear rate-dependent thermal conductivity of non-Newtonian fluids on the heat transfer enhancement in a pipe flow. An axially-constant heat flux boundary condition was adopted in the thermal fully developed region. The present analytical results of Nusselt numbers for various non-Newtonian fluids show heat transfer enhancement over those of a shear rate-independent thermal conductivity fluids. The present analytical results showed good agreement with the previous experiments which excluded the temperature-dependent viscosity effect on heat transfer. This study also proposes the use of a shear rate-dependent thermal conductivity fluids in the design of a heat exchanger for heat transfer enhancement as well as reduction of fouling.

기유와 첨가제 혼합 전 다등급 윤활유의 성능 예측 시뮬레이션 프로그램 개발 (Development of a Simulation Program to Predict the Performance of the Multi-grade Lubricant before Blending Base Oil with Additives)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제28권2호
    • /
    • pp.47-55
    • /
    • 2012
  • Generally, to product multi-grade oil like engine oil, a sort of mineral base oil is mixed with a fundamental additive package liquid and a polymer liquid as viscosity index improver in order to improve the lubricating property of base oil. That is, engine oil is the mixture of more than two fluids. Specially, a polymeric type liquid cannot be seen as the linear viscosity like Newtonian fluids. In this research, by using the governing equation describing non-Newtonian hydrodynamic lubrication related with the mixture of incompressible fluids based on the principle of continuum mechanics, it will be compared the bearing performance between the mixture of each liquid to be blended and multi-grade engine oil as a single fluid in a high speed hydrodynamic journal bearing. Further, it is to be found the way estimating the performance of the blended multi-grade engine lubricant in a journal bearing in advance before blending by using the physical properties of mineral base oil, fundamental additive liquid and polymer liquid of viscosity index improver. So, it can be reduced the number of trial and error to get the wanted lubricant by selecting the proper volume fraction of each liquid to satisfy the expected performance and estimating in advance the performance of various multi-grade oils before blending. Therefore, it can be shorten the developing time and saved the developing cost.

점탄성 유체해석용 RANS 기반 난류 모델 개발 및 검증 (Development and Evaluation of RANS based Turbulence Model for Viscoelastic Fluid)

  • 노경철
    • 한국산학기술학회논문지
    • /
    • 제18권3호
    • /
    • pp.545-550
    • /
    • 2017
  • 대동맥이나 협착된 경동맥에서는 심장수축기에 간헐적으로 난류현상이 발생하고 있으며, 혈액의 점성특성으로 인해 기존 난류모델로는 정확한 해석이 어려운 실정이다. 혈류는 점탄성 유체의 성질을 가지고 있어 유체의 전단 변형률 증가에 따라 점도가 감소하는 점탄성 유체이며, 이러한 점탄성 유체는 난류 유동시 저항 감소 현상이 발생한다. 기존의 난류해석 모델들은 점성변화가 없는 뉴턴 유체에 적합한 모델들이 대부분이기 때문에, 점탄성 유체의 저항 감소 현상을 고려한 비뉴턴 유체 해석에 적합한 난류 모델개발이 필요하다. 본 논문은 난류 모델 가운데 수렴성이 좋고 해석시간이 짧은 표준 $k-{\varepsilon}$ 모델을 기반으로 저항 완충 함수를 이용하여 비뉴턴 유체의 저항감소 현상을 해석할 수 있는 수정된 난류모델을 제시하였으며, 이를 기존 난류모델들과 비교하여 제시된 난류 모델을 검증하였다. 새로 제시된 수정된 난류모델은 벽함수 및 점성저층을 고려하지 않았기 때문에 해석시간이 대폭적으로 감소하였으며, 적은 격자수를 이용하여 효율적으로 비뉴턴 유체의 난류 현상을 해석할 수 있기 때문에 향후 혈류해석 및 점탄성유체 해석에 적용할 예정이다.

μ-PIV기법을 이용한 동정맥루 모사혈관에서의 모사 혈액의 점도특성에 따른 혈류역학적 분석 (Hemodynamical analysis by viscosity characteristics of artificial blood for μ-PIV experiment of Radio-cephalic arteriovenous fistula(RC-AVF))

  • 송륜근;이진기
    • 한국가시화정보학회지
    • /
    • 제14권1호
    • /
    • pp.33-39
    • /
    • 2016
  • Radio-cephalic arteriovenous fistula(RC-AVF) is the most recommended operation of achieving access for hemodialysis. However, it has high rates of early failure depending on the many haemodynamic conditions. To increase RC-AVF patency rate, many researches were performed by in-vitro experiment via artificial vessel and blood analogue fluid, and there were conflicting opinions about whether the non-Newtonian properties of blood have an influence on the flow in large arteries. To investigate the influence of viscoelasticity of blood within the RC-AVF, we fabricated three dimensional artificial RC-AVF and two kinds of blood analogue fluid. The velocity field of two fluids within the vessel were measured by micro-particle velocimetry(m-PIV) and compared with each other. The velocity profiles of both fluids for systolic phase were matched well while those for diastolic phase did not correspond. Therefore, it is desired to use non-newtonian fluid for in-vitro experiment of RC-AVF.

고속 열유체 저어널 베어링에서 단일유체로서의 다등급 엔진 오일과 그 첨가액체들의 혼합물에 대한 성능 비교 (The Performance Comparison between the Mixture of Each Liquid to be Blended and Multi-grade Engine Oil as a Single Fluid in a High Speed Thermo-hydrodynamic Journal Bearing)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제28권2호
    • /
    • pp.81-92
    • /
    • 2012
  • To product multi-grade oil like engine oil, a sort of mineral base oil is mixed with a fundamental additive liquid package and a polymer liquid as viscosity index improver in order to improve the lubricating property of oil. That is, engine oil is the mixture of more than two fluids. In this paper, it will be systematically organized the governing equation describing non-Newtonian thermo-hydrodynamic lubrication related with the mixture of incompressible fluids based on the principle of continuum mechanics. Then, in order to find how the thermal analysis effect on the bearing performance lubricated with the mixture of multi-fluids, it will be compared to the performances between the mixture of each liquid to be blended and multi-grade engine oil as a single fluid in a high speed journal bearing. It is found that, in the case of lower viscosity oil, the difference of pressure distribution between the above two cases turns out to be existed, even if the load capacity is same level.

미세튜브 내부를 흐르는 혈액유동의 유변학적 특성에 대한 in-vitro 연구 (In-vitro Study on Hemorheological Behaviors of Blood Flow Through a Micro Tube)

  • 강명진;지호성
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권2호
    • /
    • pp.99-105
    • /
    • 2010
  • In order to obtain velocity profile of blood flow with high spatial resolution, a micro PIV technique consisted of a fluorescent microscope, double-pulsed YAG laser, cooled CCD camera was applied to in-vitro blood flow experiment through a micro round tube of a diameter $100{\mu}m$. Velocity distributions of blood flow for rabbit were obtained. The viscosity profiles for shear rate were found at flowing condition. To provide hemorheological characteristics of blood flow, the viscosities for shear rate were evaluated. The viscosity of blood also steeply increase by decreasing shear rate resulting in Non-Newtonian flow, especially in low shear rate region caused by RBC rheological properties. The results show typical characteristics of Non-Newtonian characteristics from the results of velocity profile and viscosity for blood flow. From the inflection points, cell free layer and two-phase flow consisted with plasma and suspensions including RBCs can be separated.