• Title/Summary/Keyword: non point source

Search Result 716, Processing Time 0.03 seconds

Characteristics of Non-point source pollutant loads according to Landuse (토지이용에 따른 비점오염부하 특성)

  • Shin, Min-Hwan;Shin, Yong-Chul;Heo, Sung-Gu;Kim, Woong-Gi;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1824-1828
    • /
    • 2007
  • 본 연구에서는 농촌, 산림 및 도시유역에서 발생하는 비점원오염이 하천 수질에 미치는 영향에 관하여 분석하였다. 연구 유역으로는 농촌유역인 유포리, 산림유역인 학술림 및 도시유역인 공지천 등 3개 유역을 선정하였다. 유포리 유역의 면적은 $1.96\;km^2$으로 토지이용은 밭 7.5%, 논 11%, 과수원 1.95%를 제외한 70%가 임야지역으로 나타났다. 산림유역은 면적이 $3.9\;km^2$으로 임산실습을 위한 제탄소 등 교육 및 연구시설을 제외한 대부분(99%)이 산림으로 잘 보전되어 있다. 춘천시에 위치한 공지천 유역은 구시가지와 산림으로 구성되어 있고, 면적은 $0.19\;km^2$중 불투수면적이 $0.15\;km^2$으로 유역면적의 81.9%를 차지한다. 연구유역별로 강우시에는 5분, 건기시에는 30분 간격으로 수위를 측정한 후 수위-유량 곡선을 이용하여 유량으로 환산하였다. 수질 자료는 강우시에는 1일 3회 이상, 건기시에는 2주일에 1회 채취 하여 T-N과 T-P의 분석항목을 환경부 제정 수질 공정시험법의 제반 규정에 따라 분석하여 유역별 오염부하를 산정하였다. 농촌 및 산림유역의 T-N과 T-P의 평균농도는 8.3 mg/L 및 0.3mg/L, 2.4 mg/L 및 0.1 mg/L로 나타났고 도시유역의 건기시와 강우시의 T-N과 T-P의 평균농도는 28.1 mg/L 및 3.1 mg/L, 20.6 mg/L 및 2.5 mg/L로 나타났다. 농촌, 산림 및 도시유역의 T-N과 T-P의 연오염부하는 각각 270.60 kg/ha 및 8.64 kg/ha, 223.16 kg/ha 및 13.87 kg/ha 그리고 612.37 kg/ha 및 69.14 kg/ha이 발생하였다. 100mm 이상의 강우가 발생한 $6{\sim}9$월의 유포리와 학술림의 T-N과 T-P의 오염부하가 연오염부하의 86% 및 88% 그리고 66% 및 82%로 나타나 강우량이 오염부하에 큰 영향을 미치는 것으로 나타났다. 그러나 도시유역의 오염부하는 강우량이 많은 $6{\sim}8$월보다 강우량이 적은 5월과 12월에 크게 나타났다. 토지이용별 T-N과 T-P의 연오염부하는 도시>농촌>산림유역의 순서로 나타났다. 공장, 가정하수, 생활하수 등의 오염원이 많은 도시유역에서 T-N의 오염부하량은 농촌 및 산림유역보다 $2{\sim}3$배 높게 이상 나타났으며 T-P의 경우는 $5{\sim}9$배 이상 높게 나타나 비점원오염 배출은 하천 주변의 토지이용이 큰 영향을 미치는 것으로 판단된다.

  • PDF

Water Quality Modelling of Flood Control Dam by HSPF and EFDC (HSPF-EFDC 모델을 연계한 홍수조절댐 수질 변화 예측)

  • Lee, Young-Gi;Hwang, Sang-Chul;Hwang, Hyun-Dong;Na, Jin-Young;Yu, Na-Young;Lee, Han-Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.3
    • /
    • pp.251-266
    • /
    • 2018
  • This study predicted the effect of operation pattern of flood control dam on water quality. Flood control dam temporarily impound floodwaters and then release them under control to the river below the dam preventing the river ecosystem from the extreme flood. The Hydrological Simulation Program Fortran (HSPF) and the Environmental Fluid Dynamics Code (EFDC) were adapted to predict the water quality before and after the dam construction in the proposed reservoir. The non-point pollutant delivery load from the river basin was estimated using the HSPF, and the EFDC was used to predict the water quality using the provided watershed boundary conditions from the HSPF. As a result of water quality simulation, it is predicted that the water quality will be improved due to the decrease of pollution source due to submergence after dam construction and temporary storage during rainfall. There would be no major water quality issues such as the eutrophication in the reservoir since the dam would impound the floodwater for a short time (2~3 days). In the environmental impact assessment stage of a planned dam, there may be some limitations to the exact simulation because the model can not be sufficiently calibrated. However, if the reliability of the model is improved through the acquisition of actual data in the future, it will be possible to examine the influence of the water environment according to various operating conditions in the environmental impact assessment of the new flood control dam.

Study on the Application of Spatial-analysis of Pollutants and Load Duration Curve for Efficient Implementation of TMDLs system (오염원 공간분석 및 오염부하지속곡선을 통한 맞춤형 수질오염총량제 추진방안 연구)

  • Park, Baekyung;Ryu, Jichul;Na, EunHye;Seo, Jiyeon;Kim, Yongseok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.655-663
    • /
    • 2017
  • It is difficult to manage hotspot area and to establish the reduction plan considering with spatial-distribution on Korea TMDLs (Total Maximun Daily Loads) system. To solve this problems, methods of Load Duration Curve (LDC) using long-term flow and water quality data, and spatial-analysis were applied on present TMDLs. Jinwi A watershed which is enforced TMDLs plan were selected to study area. Results of application of suggested methods in this study to Jinwi watershed, Hwangguji tributary was selected to hotspot area and Jinwi tributary was exclued. Also, middle area of Hwangguji tributary was needed a reduction plan for the protection of non-point source pollution. In downstream area, livestock manure should be managed additionally. The new methods suggested in this study were useful to increase healthiness for total watershed.

Improvement of Sediment Trapping Efficiency Module in SWAT using VFSMOD-W Model (VFSMOD-W 모형을 이용한 SWAT 모형의 초생대 유사 저감 효율 모듈 개선)

  • Park, Younshik;Kim, Jonggun;Kim, Namwon;Park, Joonho;Jang, Won-Seok;Choi, Joongdae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.473-479
    • /
    • 2008
  • Environment problem has been arising in many countries. Especially, soil erosion has been deemed as one of the biggest issues because sediment causes muddy water and pollutants, such as agricultural chemicals, flow in the stream with this sediment. Many studies, regarding soil loss and non-point source pollution from watershed, has been performed while serious problem has been known. Soil loss occurred in most agricultural area by rainfall and runoff. It makes hydraulic structure unstable, causes environmental economical problems because muddy water destroys ecosystem and causes intake water deterioration. As revealing serious effects of muddy water by sediment, many researches have been doing with various methods. Hydraulic structures establishments such as soil erosion control dams and grit chamber are common. Vegetative filter strip is investigated in this study because vegetative filter strip is designed for reducing sediment from upland areas of the watershed, and it has many functions, not only sediment reduction but also runoff water quality improvement and wildlife habitat. With these positive functions of the vegetative filter strip, the study about vegetative filter strip has been increasing for reducing sediment because it is more effective than hydraulic structures from an environmental perspective. But the sediment trapping efficiency by vegetative filter strip, needs to be investigated and designed first. Therefore the model, VFSMOD-W, was used in this study as it can estimate sediment trapping efficiency of vegetative filter strip under various field, vegetation, weather condition. Sensitive factors to sediment trapping efficiency are studied with VFSMOD-W, and sediment trapping efficiency equation has been derived using two most sensitive factors. It is thought that the equation suggested in this study can be used in Soil and Water Assessment Tool (SWAT), to overcome the limit of SWAT filter strip module, which is based solely on filter strip width.

Application of Automatic Stormwater Monitoring System and SWMM Model for Estimation of Urban Pollutant Loading During Storm Events (빗물 자동모니터링장치와 SWMM 모델을 이용한 강우시 도시지역 오염부하량 예측에 관한 연구)

  • Seo, Dongil;Fang, Tiehu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.373-381
    • /
    • 2012
  • An automatic flow and water quality monitoring system was applied to estimate pollutant loads to an urban stream during storm events in DTV (Daeduk Techno Valley), Daejeon, Korea. The monitoring system consists of rainfall gage, ultrasonic water level meter, water quality sensors for DO, temperature, pH, conductivity, turbidity and automatic water sampler for further laboratory analysis. All data are transmitted through on-line system and the monitoring system is designed to be controlled manually in the field and remotely from laboratory computer. Flow rates were verified with field measurements during storm events and showed good agreements. Automatic sampler was used to collect real time samples and analyzed for BOD, COD, TN, TP, SS and other pollutant concentrations in the laboratory. SWMM (Storm Water Management Model) urban watershed model was applied and calibrated using the observed flow and water quality data for the study area. While flow modeling results showed good agreement for all events, water quality modeling results showed variable levels of agreement. These results indicate that current options in the SWMM model to predict pollutant build up and wash-off effects are not sufficient to satisfy modeling of all the rainfall events under study and thus need further modification. This study showed the automatic monitoring system can be used to provide data to assist further refinement of modeling accuracy. This automatic stormwater monitoring and modeling system can be used to develop basin scale water quality management strategies of urban streams in storm events.

Analysis of Characteristics of Plant, Soil Physical and Chemical of Salix spp. on the Environment of Namgang Dam Reservoir (남강댐 수변구역 버드나무류 군락의 식생분석 및 토양의 이화학적 특성)

  • Park, Jae-Hyeon;Kim, Ki Heung;Lee, Seok Bae
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.2
    • /
    • pp.161-169
    • /
    • 2013
  • This study was carried out to examine characteristics of physical and chemical current status and problems of Salix spp. communities based on growth characteristics by tree age and height of the tree species in around Namgang Dam reservoir area. Tree density in 4 survey areas was 5,284 trees/ha, but all areas need to control high tree density. Tree crown area in 4 survey areas was 9,786.4 $m^2/ha$ and crown area of Salix spp. was the most dominant among tree species in watershed of the Jinyang lake. Mean soil depth in 4 survey areas was 65.5 cm higher in the sedimental deposit soil (78 cm) than in forest soil (12.5 cm) near the watershed. Soil bulk density was also higher in the sedimental deposit soil than in forest soil because of poor porosity in the sandy sediment. Soil pH was higher in sedimental deposit soil (A, B horizon:pH 6.7) than in forest soil (A horizon:pH 5.3; B horizon:pH 5.2) because of originated from non-point source polution and detergent of domestic sewage. The results suggest that growth of Salix spp. could be poor because of low fertility with low cation exchange capacity in sedimental deposit soil.

Hydrologic and Environmental Assessment of an Infiltration Planter for Roof Runoff Use (지붕 빗물이용을 위하여 개발된 침투화분의 환경·수문학적 평가)

  • Moon, So-Yeon;Choi, Ji-Yeon;Hong, Jung-Sun;Yu, Gi-Gyung;Jeon, Je-Chan;Flores, Precious Eureka D.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.325-331
    • /
    • 2015
  • Due to urbanization and increase in impervious area, changes in natural water circulation system have become a cause of groundwater recharge reduction, streamflow depletion and other hydrological problems. Therefore, this study developed the infiltration planter techniques applied in an LID facility treating roof stormwater runoff such as, performance of small decentralized retention and infiltration through the reproduction of natural water circulation system and use of landscape for cleaning water. Assessment of an infiltration planter was performed through rainfall monitoring to analyze the water balance and pollutant removal efficiency. Hydrologic assessment of an infiltration planter, showed a delay in time of effluent for roof runoff for about 3 hours and on average, 79% of facilities had a runoff reduction through retention and infiltration. Based on the analysis, pollutant removal efficiency generated in the catchment area showed an average of 97% for the particulate matter, 94% for the organic matter and 86-96% and 92-93% for the nutrients and heavy metals were treated, respectively. Comparative results with other LID facilities were made. For this study, facilities compared the SA/CA to high pollutant removal efficiency for the determination to of the effectiveness of the facility when applied in an urban area.

Development of Climate Change Adaptation Plan for Kurunegala City, Sri Lanka (스리랑카 Kurunegala시의 기후변화 적응 계획 개발)

  • Reyes, Nash Jett DG.;Cho, Hanna;Geronimo, Franz Kevin F.;Jeon, Minsu;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.354-364
    • /
    • 2019
  • Sri Lanka is an island nation susceptible to climate-related disasters and extreme weather events. Kurunegala City is the developing capital city of the North-Western Province of Sri Lanka. Changes in rainfall patterns and a steadily increasing annual average temperature amounting to 0.69±0.37℃ were observed in the city area. Generally, urban areas are at risk due to the lack of climate change adaptation provisions incorporated in the development plans. This study was conducted to investigate the characteristics of Krunegala City, Sri Lanka and develop an appropriate climate change adaptation plan for the city. Site investigation and qualitative risk assessment were conducted to devise a plan relevant to the climate change adaptation needs of the city. Qualitative risk analyses revealed that drinking water, water resources, and health and infrastructure risks were among the major concerns in Kurunegala City. Low impact development (LID) technologies were found to be applicable to induce non-point source pollutant reduction, relieve urban heat island phenomenon, and promote sound water circulation systems. These technologies can be effective means of alleviating water shortage and reducing urban temperature. The measures and strategies presented in this study can serve as reference for developing climate change adaptation plans in areas experiencing similar adverse effects of climate change.

The Monitoring of Growth Conditions Regarding Korea Endemic Species and Natural Characteristics - Applied to Facilities Area on Highway Roadside - (한국특산식물 및 종의 자생지 특성을 고려한 식재 후 생육상태 모니터링 - 고속도로변 시설지를 대상으로 -)

  • Park, Sung-Su;Hong, Kwang-Woo;Kim, Sae-Cheon;Lee, Hyo-Yeom
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.6
    • /
    • pp.1-9
    • /
    • 2017
  • This study investigates the environmental factors of endemic species in Korea in order to understand their ecological characteristics, and to investigate the target species of their natural habitats to find similar sites. The purpose is to restore and follow suitable growth methods for the appropriate highway facility of target species to establish a management system via monitoring. This study endeavors to restore the target species near highway facilities on the basis of monitoring data and restore sites have similar natural characteristics of the target species. After restoring the target species, a restoration strategy and management plan will be established for breeding and continuation. The restoration strategy and management plan of the target species is divided into breeding, restoring, maintaining and monitoring plans. Specially management plans include several divisions such as soil, water, non-point pollution source reduction and naturalized plants. The results of this study can be used as reference materials for the restoration of endemic Korean plants in the future of highway routes, and for systematic management measures in habitats.

Runoff Characteristics of Stormwater in Small City Urban Area (국내 중소 도시지역 강우유출수의 유출특성)

  • Lee, Hong-Shin;Lee, Seung-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.3
    • /
    • pp.193-202
    • /
    • 2009
  • This study was conducted to identify the magnitude of first flush in small city urban area and to provide the basic information on the criteria of stormwater runoff management. Monitoring site was surrounded by residential area in Gumi city near to national industrial complex and the monitoring period was three months. Total watershed area was 24.9 ha, where 80% of the area is impervious (asphalt of pavement type). Periodic monitoring of conventional water quality parameters were conducted with six times of rainfall period. Event mean and site mean concentrations for all the parameters were calculated based on the analytical results. Particle size distribution was 9.82 ${\mu}m$ for $D_{0.1}$, 38.99 ${\mu}m$ for $D_{0.5}$ and 159.61 ${\mu}m$ for $D_{0.9}$ respectively. First flush phenomenon was detected highly in particulate solids than dissolved ones. The first flush criteria results by mass first flush contained between 44.4% to 58.5% pollutant mass during the first 30% of runoff volume. Mass first flush ratio and particle size distribution obtained in this study are expected to provide the basic information for the design and operation of non-point source treatment facility.