• 제목/요약/키워드: non homogenous

검색결과 67건 처리시간 0.026초

Comprehensive piezo-thermo-elastic analysis of a thick hollow spherical shell

  • Arefi, M.;Khoshgoftar, M.J.
    • Smart Structures and Systems
    • /
    • 제14권2호
    • /
    • pp.225-246
    • /
    • 2014
  • The present paper develops piezo-thermo-elastic analysis of a thick spherical shell for generalized functionally graded piezoelectric material. The assumed structure is loaded under thermal, electrical and mechanical loads. The mechanical, thermal and electrical properties are graded along the radial direction based on a power function with three different non homogenous indexes. Primarily, the non homogenous heat transfer equation is solved by applying the general boundary conditions, individually. Substitution of stress, strain, electrical displacement and material properties in equilibrium and Maxwell equations present two non homogenous differential equation of order two. The main objective of the present study is to improve the relations between mechanical and electrical loads in hollow spherical shells especially for functionally graded piezoelectric materials. The obtained results can evaluate the effect of every non homogenous parameter on the mechanical and electrical components.

Plate on non-homogeneous elastic half-space analysed by FEM

  • Wang, Yuanhan;Ni, Jun;Cheung, Y.K.
    • Structural Engineering and Mechanics
    • /
    • 제9권2호
    • /
    • pp.127-139
    • /
    • 2000
  • The isoparametric element method is used for a plate on non-homogenous foundation. The surface displacement due to a point force acting on the non-homogeneous foundation is the fundamental solution. Based on this analysis, the interaction between the foundation and plate can be determined and the reaction of the foundation can be treated as the external force to the plate. Therefore, only the plate needs to be divided into some elements. The method presented in this paper can be used in cases such as thin or thick plate, different plate shapes, various loading, homogenous and non-homogenous foundations. The examples in this paper show that this method is versatile, efficient and highly accurate.

Applications of Harmony Search in parameter estimation of probability distribution models for non-homogeneous hydro-meteorological extreme events

  • Lee, Tae-Sam;Yoon, Suk-Min;Gang, Myung-Kook;Shin, Ju-Young;Jung, Chang-Sam
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.258-258
    • /
    • 2012
  • In frequency analyses of hydrological data, it is necessary for the interested variables to be homogenous and independent. However, recent evidences have shown that the occurrence of extreme hydro-meteorological events is influenced by large-scale climate variability, and the assumption of homogeneity does not generally hold anymore. Therefore, in order to associate the non-homogenous characteristics of hydro-meteorological variables, we propose the parameter estimation method of probability models using meta-heuristic algorithms, specifically harmony search. All the weather stations in South Korea were employed to demonstrate the performance of the proposed approaches. The results showed that the proposed parameter estimation method using harmony search is a comparativealternative for the probability distribution of the non-homogenous hydro-meteorological variables data.

  • PDF

Determination of the Ampacity of Buried Cable in Non-Homogenous Environmental Condition by 3D Computation

  • Vahidi, Behrooz;Mahmoudi, Amin
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권3호
    • /
    • pp.384-388
    • /
    • 2012
  • Finite Volume Method (FVM) is chosen to calculate the heat transfer field and the heat generation with in the cable and heat dissipation in the surrounding soil of a three phase 145kV underground cable brunch that make it possible to analyze the ampacity of the cable. FLUENT as the proper software in this field is used to generate and solve the problem. Non-homogenous environment is considered for cable ampacity calculation and results are compare with homogenous environment condition.

Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field

  • Arefi, M.;Rahimi, G.H.;Khoshgoftar, M.J.
    • Smart Structures and Systems
    • /
    • 제9권5호
    • /
    • pp.427-439
    • /
    • 2012
  • The present paper deals with the analytical solution of a functionally graded piezoelectric (FGP) cylinder in the magnetic field under mechanical, thermal and electrical loads. All mechanical, thermal and electrical properties except Poisson ratio can be varied continuously and gradually along the thickness direction of the cylinder based on a power function. The cylinder is assumed to be axisymmetric. Steady state heat transfer equation is solved by considering the appropriate boundary conditions. Using Maxwell electro dynamic equation and assumed magnetic field along the axis of the cylinder, Lorentz's force due to magnetic field is evaluated for non homogenous state. This force can be employed as a body force in the equilibrium equation. Equilibrium and Maxwell equations are two fundamental equations for analysis of the problem. Comprehensive solution of Maxwell equation is considered in the present paper for general states of non homogeneity. Solution of governing equations may be obtained using solution of the characteristic equation of the system. Achieved results indicate that with increasing the non homogenous index, different mechanical and electrical components present different behaviors along the thickness direction. FGP can control the distribution of the mechanical and electrical components in various structures with good precision. For intelligent properties of functionally graded piezoelectric materials, these materials can be used as an actuator, sensor or a component of piezo motor in electromechanical systems.

Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure

  • Arefi, M.;Rahimi, G.H.
    • Smart Structures and Systems
    • /
    • 제8권5호
    • /
    • pp.433-447
    • /
    • 2011
  • The present paper addresses the nonlinear response of a FG square plate with two smart layers as a sensor and actuator under pressure. Geometric nonlinearity was considered in the strain-displacement relation based on the Von-Karman assumption. All the mechanical and electrical properties except Poisson's ratio can vary continuously along the thickness of the plate based on a power function. Electric potential was assumed as a quadratic function along the thickness direction and trigonometric function along the planar coordinate. By evaluating the mechanical and electrical energy, the total energy equation can be minimized with respect to amplitude of displacements and electrical potential. The effect of non homogenous index was investigated on the responses of the system. Obtained results indicate that with increasing the non homogenous index, the displacements and electric potential tend to an asymptotic value. Displacements and electric potential can be presented in terms of planar coordinate system. A linear analysis was employed and then the achieved results are compared with those results that are obtained using the nonlinear analysis. The effect of the geometric nonlinearity is investigated by using the comparison between the linear and nonlinear results. Displacement-load and potential-load curves verified the necessity of a nonlinear analysis rather than a linear analysis. Improvement of the previous results (by the linear analysis) through employing a nonlinear analysis can be presented as novelty of this study.

Neutronics modeling of bubbles in bubbly flow regime in boiling water reactors

  • Turkmen, Mehmet;Tiftikci, Ali
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1241-1250
    • /
    • 2019
  • This study mainly focused on the neutronics modeling of bubbles in bubbly flow in boiling water reactors. The bubble, ring and homogenous models were used for radial void fraction distribution. Effect of the bubble and ring models on the infinite multiplication factor and two-group flux distribution was investigated by comparing with the homogenous model. Square pitch unit cell geometry was used in the calculations. In the bubble model, spherical and non-spherical bubbles at random positions, sizes and shapes were produced by Monte Carlo method. The results show that there are significant differences among the proposed models from the viewpoint of physical interaction mechanism. For the fully-developed bubbly flow, $k_{inf}$ is overestimated in the ring model by about $720{\pm}6pcm$ with respect to homogeneous model whereas underestimated in the bubble model by about $-65{\pm}9pcm$ with a standard deviation of 15 pcm. In addition, the ring model shows that the coolant must be separated into regions to properly represent the radial void distribution. Deviations in flux distributions principally occur in certain regions, such as corners. As a result, the bubble model in modeling the void fraction can be used in nuclear engineering calculations.

Multi-scale heat conduction models with improved equivalent thermal conductivity of TRISO fuel particles for FCM fuel

  • Mouhao Wang;Shanshan Bu;Bing Zhou;Zhenzhong Li;Deqi Chen
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1140-1151
    • /
    • 2023
  • Fully Ceramic Microencapsulated (FCM) fuel is emerging advanced fuel material for the future nuclear reactors. The fuel pellet in the FCM fuel is composed of matrix and a large number of TRistructural-ISOtopic (TRISO) fuel particles which are randomly dispersed in the SiC matrix. The minimum layer thickness in a TRISO fuel particle is on the order of 10-5 m, and the length of the FCM pellet is on the order of 10-2 m. Hence, the heat transfer in the FCM pellet is a multi-scale phenomenon. In this study, three multi-scale heat conduction models including the Multi-region Layered (ML) model, Multi-region Non-layered (MN) model and Homogeneous model for FCM pellet were constructed. In the ML model, the random distributed TRISO fuel particles and coating layers are completely built. While the TRISO fuel particles with coating layers are homogenized in the MN model and the whole fuel pellet is taken as the homogenous material in the Homogeneous model. Taking the results by the ML model as the benchmark, the abilities of the MN model and Homogenous model to predict the maximum and average temperature were discussed. It was found that the MN model and the Homogenous model greatly underestimate the temperature of TRISO fuel particles. The reason is mainly that the conventional equivalent thermal conductivity (ETC) models do not take the internal heat source into account and are not suitable for the TRISO fuel particle. Then the improved ETCs considering internal heat source were derived. With the improved ETCs, the MN model is able to capture the peak temperature as well as the average temperature at a wide range of the linear powers (165 W/cm~ 415 W/cm) and the packing fractions (20%-50%). With the improved ETCs, the Homogenous model is better to predict the average temperature at different linear powers and packing fractions, and able to predict the peak temperature at high packing fractions (45%-50%).

Effect of the rotation on a non-homogeneous infinite cylinder of orthotropic material with external magnetic field

  • Hussein, Nahed S.;Bayones, F.S.;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제54권1호
    • /
    • pp.135-148
    • /
    • 2015
  • The present investigation is concerned with a study effect of magnetic field and non-homogenous on the elastic stresses in rotating orthotropic infinite circular cylinder. A certain boundary conditions closed form stress fields solutions are obtained for rotating orthotropic cylinder under initial magnetic field with constant thickness for three cases: (1) Solid cylinder, (2) Cylinder with a circular hole at the center, (3) Cylinder mounted on a circular rigid shaft. Analytical expressions for the components of the displacement and stress fields in different cases are obtained. The effect of rotation and magnetic field and non-homogeneity on the displacement and stress fields are studied. Numerical results are illustrated graphically for each case. The effects of rotating and magnetic field and non-homogeneity are discussed.

Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor

  • Arefi, Mohammad;Zenkour, Ashraf M.
    • Smart Structures and Systems
    • /
    • 제19권1호
    • /
    • pp.33-38
    • /
    • 2017
  • This research tries to present a nonlinear thermo-elastic solution for a functionally graded spherical shell subjected to mechanical and thermal loads. Geometric nonlinearity is considered using the Lagrange or finite strain tensor. Non-homogeneous material properties are considered based on a power function. Adomian's decomposition method is used for calculation of nonlinear results. Nonlinear results such as displacement can be evaluated for sphere in terms of different indexes of non-homogeneity. A comprehensive comparison between linear and nonlinear results and evaluation of the percentage of difference between them can be performed in this paper. The obtained results indicate that the improvement of the results due to usage of nonlinear analysis is depending on the non-homogeneous index.