• Title/Summary/Keyword: nominal strength

Search Result 285, Processing Time 0.028 seconds

Mechanical Properties of Reinforcements for Various Nominal Strength (공칭강도에 따른 철근콘크리트용 봉강의 역학적 특성)

  • Paek, Min-Hee;Shin, Jung-Ho;Kim, Jee-Sang;Moon, Jae-Heum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.311-312
    • /
    • 2010
  • The mechanical properties of reinforcements and concrete are most important factor which decide the resistance strength of the reinforced concrete. In this study, analyze the mechanical properties of reinforcement based on experimental data in Korea.

  • PDF

Probabilistic fatigue assessment of rib-to-deck joints using thickened edge U-ribs

  • Heng, Junlin;Zheng, Kaifeng;Kaewunruen, Sakdirat;Zhu, Jin;Baniotopoulos, Charalampos
    • Steel and Composite Structures
    • /
    • v.35 no.6
    • /
    • pp.799-813
    • /
    • 2020
  • Fatigue cracks of rib-to-deck (RD) joints have been frequently observed in the orthotropic steel decks (OSD) using conventional U-ribs (CU). Thickened edge U-rib (TEU) is proposed to enhance the fatigue strength of RD joints, and its effectiveness has been proved through fatigue tests. In-depth full-scale tests are further carried out to investigate both the fatigue strength and fractography of RD joints. Based on the test result, the mean fatigue strength of TEU specimens is 21% and 17% higher than that of CU specimens in terms of nominal and hot spot stress, respectively. Meanwhile, the development of fatigue cracks has been measured using the strain gauges installed along the welded joint. It is found that such the crack remains almost in semi-elliptical shape during the initiation and propagation. For the further application of TEUs, the design curve under the specific survival rate is required for the RD joints using TEUs. Since the fatigue strength of welded joints is highly scattered, the design curves derived by using the limited test data only are not reliable enough to be used as the reference. On this ground, an experiment-numerical hybrid approach is employed. Basing on the fatigue test, a probabilistic assessment model has been established to predict the fatigue strength of RD joints. In the model, the randomness in material properties, initial flaws and local geometries has been taken into consideration. The multiple-site initiation and coalescence of fatigue cracks are also considered to improve the accuracy. Validation of the model has been rigorously conducted using the test data. By extending the validated model, large-scale databases of fatigue life could be generated in a short period. Through the regression analysis on the generated database, design curves of the RD joint have been derived under the 95% survival rate. As the result, FAT 85 and FAT 110 curves with the power index m of 2.89 are recommended in the fatigue evaluation on the RD joint using TEUs in terms of nominal stress and hot spot stress respectively. Meanwhile, FAT 70 and FAT 90 curves with m of 2.92 are suggested in the evaluation on the RD joint using CUs in terms of nominal stress and hot spot stress, respectively.

An Experimental Study of fatigue Strength of Welded Structures Using Structural Stress and Hot Spot Stress (구조응력 및 핫스팟응력을 이용한 피로수명 평가에 관한 실험적 연구)

  • Kang, Sung-Won;Kim, Myung-Hyn;Kim, Seok-Hun;Ha, Woo-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.129-135
    • /
    • 2005
  • At present, fatigue design of welded structures is primarily based on a nominal stress or hot spot stress approach with a series of classified weld S-N curves. Although well accepted by major industries, the nominal stress based fatigue design approach is cumbersome in terms of securing a series of S-N curves corresponding to each class of joint types and loading modes. The hot spot stress based fatigue design has a difficulty of finding a proper stress through the global model, the midium size model, and the detail model of ship structure. Also, it is difficult to link proper displacements within three different mesh size models. Recently, the structural stress is proposed as a mesh-size insensitive structural stress definition that gives a stress state at weld toe with relatively large mesh size. However, this method requires an experimental validation in obtaining the fatigue strength of weldments. Therefore, in this study, a series of experiment is performed for various sizes of weldments.

Seismic Behavior of RC Beam-Column Exterior Joints with Unbonded Tendons and High Strength Concrete (비부착 강연선과 고강도 콘크리트를 적용한 철근콘크리트 외부 접합부의 내진 거동)

  • Kwon, Byung Un;Kang, Thomas H.-K.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.283-292
    • /
    • 2015
  • In the moment frame subjected to earthquake loads, beam-column joint is structurally important for ductile behavior of a system. ACI Committee 352 proposed guidelines for designing beam-column joint details. The guidelines, however, need to be updated because of the lack of data regarding several factors that may improve the performance of joints. The purpose of this study is to investigate the seismic performance of reinforced concrete exterior joints with high-strength materials and unbonded tendons. Three specimens with different joint shear demand-to-strength ratios were constructed and tested, where headed bars were used to anchor the beam bars into the joint. All specimens showed satisfactory seismic behavior including moment strength of 1.3 times the nominal moment, ductile performance (ductility factor = at least 2.4), and sufficiently large dissipated energy.

Ultimate and Fatigue Strength of Ship Hopper Knuckles (선체 호퍼너클 구조의 최종강도 및 피로강도)

  • 김영한;정장영;백점기;김하수;김도현
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.77-82
    • /
    • 2000
  • The aim of the present study is to investigate the characteristics of ultimate the fatigue strength of hopper knuckles in merchant vessels carrying bulk cargo or LNG/LPG/ The ultimate strength test is undertaken on the hopper knuckle model, subject to end tip load. A series of fatigue tests are carried out on the hopper knuckle models varying the level of the nominal stresses. The elasto-plastic finite element analysis is performed to examine the distribution of hot spot stresses near weld toe and also the progressive collapse behavior of the test model. S-N curves are developed based on the fatigue test results.

  • PDF

A Comparative Study of the Fatigue Strength on Cruciform Joints by Local Stress Methods (십자형 용접부 피로강도 산정을 위한 국부응력법의 비교연구)

  • Yang, Park-Dal-Chi;Ahn, Jung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.573-579
    • /
    • 2010
  • The notch effects on the fatigue strength of welded joints are both stress concentration and fatigue strength reduction. In the notch stress approach, the notch effects are usually approximated by introducing weld-bead parameters for the local detailed weld joints. In this paper, well-known notch stress approaches - critical distance method, area method and fictitious rounding method are presented for the fatigue strength of cruciform joints. The estimated results of the present methods are applied to the experiments performed in this study and reported in the references. The results of the application show that the fatigue-life scatterness of the experimental data expressed in the nominal stress is significantly reduced by introducing the effective fatigue stress of the present study.

Engineering properties of steel fibre reinforced geopolymer concrete

  • Ganesan, N.;Indira, P.V.;Santhakumar, Anjana
    • Advances in concrete construction
    • /
    • v.1 no.4
    • /
    • pp.305-318
    • /
    • 2013
  • Engineering properties such as compressive strength, splitting tensile strength, modulus of rupture, modulus of elasticity and Poisson's ratio of geopolymer concrete (GPC) and steel fibre reinforced geopolymer concrete (SFRGPC) have been obtained from standard tests and compared. A total of 15 specimens were tested for determining each property. The grade of concrete used was M 40. The percentages of steel fibres considered include 0.25%, 0.5%, 0.75% and 1%. In general, the addition of fibres improved the mechanical properties of both GPC and SFRGPC. However the increase was found to be nominal in the case of compressive strength (8.51%), significant in the case of splitting tensile strength (61.63%), modulus of rupture (24%), modulus of elasticity (64.92%) and Poisson's ratio (50%) at 1% volume fraction of fibres. An attempt was made to obtain the relation between the various engineering properties with the percentage of fibres added.

An Analytical Study on Ductility of Reinforced Concrete Columns under Tension Controlled Region (인장지배영역에서의 철근콘크리드 기둥의 연성에 관한 해석적 연구)

  • 손혁수;김준범;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.527-532
    • /
    • 1997
  • Design strength of structural members could be determined by applying a strength reduction factor to nominal strength. At the beginning point of the transition region for the strength reduction factor, P=0.1$\sigma$$_{ck}A_g$, only sectional area and concrete strength are adopted as the variables of P=0.1$\sigma$$_{ck}A_g$. Therefore, P=0.1$\sigma$$_{ck}A_g$ is the empirically adopted which does not consider steel ratio, steel yielding stress, and steel arrangement. So, this research was perpormed the computer program for the analysis of axial force-moment-curvature relationship of reinforced concrete columns by sectional behaviour nonlinear analysis using a concrete compressive stress-strain curve, in order to investigate the ductility of reinforced concrete columns. As a result, ductility indicies of axial force, P=0.1$\sigma$$_{ck}A_g$, represented the lack of consistency of the indicies value for the various sections.

  • PDF

Fatigue Strength Assessment of TLP Tendon Porch Using API 2W Gr.50 Steel

  • Im, Sung-Woo;Seo, Young-Seok;Lee, Joo-Sung
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.1
    • /
    • pp.25-35
    • /
    • 2007
  • This paper is concerned with the fatigue strength assessment of tendon porch found which is categorized as the special structural member in TLP. Large-scale tendon porch specimens have been designed and fabricated with API 2W Gr.50 steel recently produced by POSCO. Fatigue test has been carried out for three tendon porch specimens under various load level. Fatigue strength has been evaluated based on the nominal stress range and the results are compared with the fatigue design curve of DnV RP-C203. From the present experimental study, it has been found that the porch specimens satisfy the fatigue design rule although test was carried out under the positive stress ratio. It can be, therefore, said that the API 2W steel produced by POSCO possess sufficient fatigue strength.

Investigation of shear transfer mechanisms in repaired damaged concrete columns strengthened with RC jackets

  • Achillopoulou, D.V;Karabinis, A.I
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.575-598
    • /
    • 2013
  • The study presents the results of an experimental program concerning the shear force transfer between reinforced concrete (RC) jackets and existing columns with damages. In order to investigate the effectiveness of the repair method applied and the contribution of each shear transfer mechanism of the interface. It includes 22 concrete columns (core) (of 24,37MPa concrete strength) with square section (150mm side, 500 mm height and scale 1:2). Ten columns had initial construction damages and twelve were subjected to initial axial load. Sixteen columns have full jacketing at all four faces with 80mm thickness (of 31,7MPa concrete strength) and contain longitudinal bars (of 500MPa nominal strength) and closed stirrups spaced at 25mm, 50mm or 100mm (of 220MPa nominal strength). Fourteen of them contain dowels at the interface between old and new concrete. All columns were subjected to repeated (pseudo-seismic) axial compression with increasing deformation cycles up to failure with or without jacketing. Two load patterns were selected to examine the difference of the behavior of columns. The effects of the initial damages, of the reinforcement of the interface (dowels) and of the confinement generated by the stirrups are investigated through axial- deformation (slip) diagrams and the energy absorbed diagrams. The results indicate that the initial damages affect the total behavior of the column and the capacity of the interface to shear mechanisms and to slip: a) the maximum bearing load of old column is decreased affecting at the same time the loading capacity of the jacketed element, b) suitable repair of initially damaged specimens increases the capacity of the jacketed column to transfer load through the interface.