본 논문에서는 잡음음성 HMM (Hidden Markov Model)의 파라미터 값을 효율적으로 추정하는 새로운 방법에 대해서 제안하였다. 기존의 방법들에서 잡음음성의 HMM 파라미터 값을 추정하기 위해서는 먼저 잡음음성의 생성 모델을 가정한 후, 잡음과 원래 음성의 통계 모델을 이용하여 잡음음성 HMM 파라미터 값을 해석적으로 얻게 된다. 하지만 이러한 해석적 방법은 항상 단순화의 가정을 취하게 되므로 실제의 잡음음성 HMM 분포에 정확히 근접하는데 어려움을 겪게 된다. 본 연구에서는 이러한 가정을 하지 않고, 원래의 깨끗한 음성에서 얻을 수 있는 HMM의 파라미터 값을 사용하고 결정적 잡음 모델을 이용함으로서 기존의 방법보다 인식시에 계산량을 줄일 수 있었을 뿐만 아니라 인식 성능의 향상도 이룰 수 있었다.
In this letter, we propose a new histogram equalization technique for feature compensation in speech recognition under noisy environments. The proposed approach combines a signal-to-noise-ratio-dependent feature reconstruction method and the class histogram equalization technique to effectively reduce the acoustic mismatch present in noisy speech features. Experimental results from the Aurora 2 task confirm the superiority of the proposed approach for acoustic feature compensation.
최근 음성 인식 모델들이 점점 발달하고 있고 이와 더불어 좋은 데이터를 얻기 위한 다양한 음성 처리 기술들도 발전하고 있다. 한편 국방 분야에서도 노이즈가 낀 음성 데이터로부터 노이즈를 제거하고 이를 효과적으로 음성 인식하는 기술을 접목하려고 시도하고 있다. 본 논문에서는 다양한 소음이 존재하는 전장 상황 속에서 음성 인식 기술을 활용하여 효과적으로 지휘관이 명령을 전달할 수 있는 음성 인식방법을 제안하였다. 제안방법은 노이즈가 있는 음성에 대해서 노이즈를 제거 후 OpenAI의 Whisper 모델을 사용하여 텍스트로 변환하는 방법이다. 실험결과로써, 제안 방법은 노이즈를 제거하지 않은 기존 방법에 비해서 글자 오류률(Charactor Error Rate, CER)이 6.17% 감소된 것을 볼 수가 있었다. 추가적으로 제안방법을 이용하여 국방분야에 적용할 수 있는 부분에 대해서도 기술하였다.
One of major problems in speech recognition is performance degradation due to the mismatch between the training and test environments. Recently, Stereo-based Piecewise LInear Compensation for Environments (SPLICE), which is frame-based bias removal algorithm for cepstral enhancement using stereo training data and noisy speech model as a mixture of Gaussians, was proposed and showed good performance in noisy environments. In this paper, we propose several methods to improve the conventional SPLICE. First we apply Cepstral Mean Subtraction (CMS) as a preprocessor to SPLICE, instead of applying it as a postprocessor. Secondly, to compensate residual distortion after SPLICE processing, two-stage SPLICE is proposed. Thirdly we employ phonetic information for training SPLICE model. According to experiments on the Aurora 2 database, proposed method outperformed the conventional SPLICE and we achieved a 50% decrease in word error rate over the Aurora baseline system.
본 논문에서는 잡음 환경에 강인한 음성 인식 성능을 위해 특징 보상 이득을 이용한 음성 향상 기법을 제안한다. 본 논문에서는 변분모델 생성 기법을 채용한 병렬 결합된 가우스 혼합 모델(Parallel Combined Gaussian Mixture Model, PCGMM) 기반의 특징 보상 기법으로부터 계산할 수 있는 특징 보상 이득을 이용하는 음성 향상 기술을 제안한다. 불일치 환경 음성 인식 시스템 적용 환경에서 본 논문에서 제안하는 기법이 실험 결과에서 기존의 전처리 기법 및 이전 연구에서 제안된 특징 보상 기반의 음성 향상 기법에 비해 다양한 잡음 및 SNR(Signal to Noise Ratio) 조건에서 월등한 인식 성능을 나타내는 것을 확인한다. 또한 잡음 모델 선택 기법을 적용함으로써 음성 인식 성능을 유사한 수준으로 유지하면서 계산량을 대폭적으로 감축할 수 있다.
최근 잡음이 심한 환경에서 음성인식을 신뢰성있게 하기 위하여 입모양의 움직임과 음성을 같이 사용하는 방법이 활발히 연구되고 있다 본 논문에서도 이러한 목적으로 영상언어인식기와 음성인식기의 결과에 각각 가중치를 주어 결합하는 방법을 제안한다. 특히 가중치를 입력음성의 잡음의 정도에 따라 자동적으로 결정하는 방법을 제안한다. 가중치의 결정을 위하여 입력샘플간의 상관도와 LPC분석의 잔여 오차를 이용한다. 모의실험 결과, 이런 방식으로 결합된 인식기는 잡음이 심한 환경에서도 약 83%의 인식성능을 보이고 있다.
The human being uses speech signals to exchange information. When background noise is present, speech recognizers experience performance degradations. Speech recognition through speech enhancement in the noisy environment was studied. Histogram method as a reliable noise estimation approach for spectral subtraction was introduced using MFCC method. The experiment results show the effectiveness of the proposed algorithm.
Bimodal speech recognition based on lip reading has been studied as a representative method of speech recognition under noisy environments. There are three integration methods of speech and lip modalities as like direct identification, separate identification and dominant recording. In this paper we evaluate the robustness of lip reading methods under the assumption that lip parameters are estimated with errors. We show that the dominant recording approach is more robust than other methods through lip reading experiments.
본 논문에서는 이기종 음성 인식 시스템에 독립적으로 적용할 수 있는 음성 향상 기법을 제안한다. 잡음 환경 음성 인식에 효과적인 것으로 알려져 있는 특징 보상 기법이 효과적으로 적용되기 위해서는 특징 추출 기법와 음향 모델이 음성 인식 시스템과 일치해야 한다. 상용화된 음성 인식 시스템에 부가적으로 전처리 기법을 적용하는 상황과 같이, 음성 인식 시스템에 대한 정보가 알려져 있지 않은 상황에서는 기존의 특징 보상 기법을 적용하기가 어렵다. 본 논문에서는 기존의 PCGMM 기반의 특징 보상 기법에서 얻어지는 이득을 이용하는 음성 향상 기술을 제안한다. 실험 결과에서는 본 논문에서 제안하는 기법이 미지의 (Unknown) 음성 인식 시스템 적용 환경에서 기존의 전처리 기법에 비해 다양한 잡음 및 SNR 조건에서 월등한 인식 성능을 나타내는 것을 확인한다.
We propose a novel feature processing technique which can provide a cepstral liftering effect in the log-spectral domain. Cepstral liftering aims at the equalization of variance of cepstral coefficients for the distance-based speech recognizer, and as a result, provides the robustness for additive noise and speaker variability. However, in the popular hidden Markov model based framework, cepstral liftering has no effect in recognition performance. We derive a filtering method in log-spectral domain corresponding to the cepstral liftering. The proposed method performs a high-pass filtering based on the decorrelation of filter-bank energies. We show that in noisy speech recognition, the proposed method reduces the error rate by 52.7% to conventional feature.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.