Steganography based on Just Noticeable Difference(JND) has been used for natural images. However, it has been recognized to have defects for the non-natural images such as scanned text images, cartoons, etc. In this paper, an alternative method is proposed to improve this problem. A new scheme is designed specially for the non-natural images. Instead of JND, Noise Visibility Function(NVF) is used. NVF value and edge strength value of each pixel ate combined to decide the embedding data capacity and the visibility of data embedded images have been improved specially for the non-natural images.
본 논문에서는 멀티웨이브릿 변환영역에서 연속부대역 양자화 및 지각 모델을 이용한 내용기반 적응적 워터마킹 기법을 제안한다. 제안한 방법의 워터마크는 멀티웨이브릿을 통해 분해된 계수들 중 지각적 중요계수(perceptually significant coefficients, PSCs)에 삽입된다. 고주파 부대역에서의 PSC는 연속부대역양자화(successive subband quantization, SSQ)에 의해 결정된다. 문턱값은 각 부대역내의 최대계수의 절반에서 결정된다. 지각모델은 워터마크 삽입을 위한 국부적 영상 특성을 가지는 NVF (noise visibility function)에 기반한 통계적 방법을 적용한다. 이 모델은 워터마크가 노이즈특성을 가지므로 정상상태 일반화 가우스모델을 사용한다. 또한 워터마크는 각 부대역 영역의 분산과 형상계수 (shape parameter)에 의해 추정함으로써 평탄영역과 에지나 텍스쳐 영역에 따라 내용 기반 적응적 척도를 얻는다. 제안한 멀티웨이브릿 변환 기반에서의 워터마크 삽입 방법에 대한 실험 결과 우수한 강인성과 비가시성을 확인하였다.
본 논문에서는 인간의 심리 시각적 특성을 고려한 HVS(Human Visual System) 모델과 웨이블릿 중간주파수 대역의 계수쌍을 이용한 블라인드 워터마킹 기법을 제안한다. 중간주파수 대역의 계수쌍은 각종 영상처리를 이용한 공격과 압축 공격 등에 대해서 비슷한 왜곡 현상을 보인다. 따라서 웨이블릿 계수를 일정한 크기로 양자화 하는 기존 방법들보다 중간주파수대역의 계수쌍 사이의 관계를 이용한 양자화 방법이 보다 안정적인 성능을 나타낸다. 또한 Noise Visibility Function(NVF)을 이용한 HVS 모델을 적용함으로써 워터마크 삽입 후의 비가시성을 확보하였다. 실험을 통하여 이진 워터마크를 삽입한 영상이 평균 44㏈ 이상의 우수한 화질을 유지하면서도 각종 영상처리 공격 및 JPEG 압축 공격에 대해서 견고성이 우수함을 확인하였다.
인간의 시각체계는 영상의 밝기의 정도가 균일한 연에서는 잡음에 민감하지만, 변화하는 부분에서는 에지(edge)의 정도가 심할수록 잡음에 둔감하고, 에지부분에서 멀어질수록 잡음에 대한 민감도가 급격하게 증가한다. 이러한 인간의 시각 특성에 기반을 둔 여러가지 영상복원 방식이 제안되고 있는데, 본 논문에서는 영상을 복원함에 있어서 윤곽 부분에서는 변화하는 부분의 선명도를 높이고, 영상이 평탄한 부분에서는 잡음 성분을 많이 억제 시켜서 영상을 주관적으로 향상시키는 적응적 영상복원 방식을 소개한다. 이 방법은 에지 검출을 하기 위해서 각 화소를 기준으로 지역 분산값(local variance)을 사용하여 시각 함수(visibility function)를 구하고, 이 값에 따라 정규화 매개변수를 변환시켜 적응적으로 영상을 복원한다. 즉 영상을 평탄한 부분에서 에지부분까지 몇 단계로 나누어서 각각의 단계에 해당하는 유한 임펄스 CLS 필터를 구현해서 영상을 복원한다.
본 논문에서는 웨이브릿 영역에서 HVS 및 NVF 함수를 사용하여 영상특성에 기반한 통계적 판정법을 이용한 적응 워터마크 검출 알고리즘을 판정법을 제안한다. 워터마크는 4레벨로 분해된 웨이브릿 영역에서 JND(just noticeable difference) 특성과 NVF(noise visibility function)를 이용한 통계적 특성을 기반으로 정상상태 가우시안 모델에 따라 지각적 동조 특성을 이용하여 적응적으로 삽입하고, Bayes 이론 및 Neyman-Pearson 정리를 이용한 통계적 판정법을 이용하여 워터마크를 추출함으로써 기존의 통계적 판정법 보다 정확하게 워터마크 존재 유무를 판정 할 수 있음을 확인하였다.
This paper presents perceptual model with a stochastic rnultiresolution characteristic that can be applied with watermark embedding in the biorthogonal wavelet domain. The perceptual model with adaptive watermarking algorithm embed at the texture and edge region for more strongly embedded watermark by the SSQ(successive subband quantization). The watermark embedding is based on the computation of a NVF(noise visibility function) that have local image properties. This method uses non-stationary Gaussian model stationary Generalized Gaussian model because watermark has noise properties. In order to determine the optimal NVF, we consider the watermark as noise. The particularities of embedding in the stationary GG model use shape parameter and variance of each subband regions in multiresolution. To estimate the shape parameter, we use a moment matching method. Non-stationary Gaussian model use the local mean and variance of each subband. The experiment results of simulation were found to be excellent invisibility and robustness. Experiments of such distortion are executed by Stirmark benchmark test.
In digital radiography, to improve the contrast of digital radiography image, the multi-scale nonlinear amplification algorithm based on unsharp masking is one of the major image enhancement algorithms. In this paper, we used the Laplacian pyramid to decompose a digital radiography(DR) image. In our simulation, the DR image was decomposed into seven layers and the coefficients of the each layer was amplified with nonlinear function. We also imported a noise containment algorithm to limit noise amplification. To enhance the contrast of image, we proposed a new adaptive non-linear gain amplification coefficients. As a result of having applied to some clinical data, a detail visibility was improved significantly without unacceptable noise boosting. Images that acquired with the proposed adaptive non-linear gain coefficients have shown superior quality to those that applied similar gain control method and expected to be accepted in the clinical applications.
We propose a new logo watermark scheme for digital images which embed a watermark by modifying middle-frequency sub-bands of wavelet transform. Independent component analysis (ICA) is introduced to authenticate and copyright protect multimedia products by extracting the watermark. To exploit the Human visual system (HVS) and the robustness, a perceptual model is applied with a stochastic approach based on noise visibility function (NVF) for adaptive watermarking algorithm. Experimental results demonstrated that the watermark is perfectly extracted by ICA technique with excellent invisibility, robust against various image and digital processing operators, and almost all compression algorithms such as Jpeg, jpeg 2000, SPIHT, EZW, and principal components analysis (PCA) based compression.
본 논문에서는 보다 효과적이고 강인한 워터마크 은닉을 위한 방법으로 웨이브릿 변환 영역에서 영상의 통계적 특성에 기초한 비정상상태(non-stationary)에서와 정상상태(stationary) 일반화 가우스(generalized Gaussian: GG)모델을 이용한 적응 워터마크 은닉 기술을 제안한다. 워터마크는 고주파 영역에서 연속 부대역 양자화(successive subband quantization: SSQ)를 이용하여 다해상도 영상의 웨이브릿 계수 중에서 시각적 중요 계수(perceptual significant coefficients: PSC)를 선택하여 삽입한다. 워터마크 은닉을 위한 지각 모델은 NVF(noise visibility function)함수에 의해 계산된다. 이것은 비정상상태와 정상상태의 통계적 특성을 이용하고, 국부영상 특성을 가진다. 은닉모델은 다해상도내의 각 부대역별 분산과 형상계수(shape parameter)를 사용한다. Stirmark benchmark test에 근거하여 여러 가능한 왜곡에 대한 실험에서 강인성과 비가시성에서의 우수함을 확인하였고, 비정상상태의 경우와 정상상태의 경우를 비교하였다.
본 논문에서는 디지털 컨텐츠 저작권 보호를 위해 강인성과 비가시성의 유지를 위한 보다 효과적인 방법으로 웨이브릿 변환에서 적응적 워터마크 삽입강도를 갖는 지각적 데이터 은닉 모델을 제안한다. 먼저 영상을 9/7 쌍직교 웨이브릿 필터를 사용해 4레벨로 다해상도 분해한다. 다음으로 연속부대역 양자화(successive subband quantization)를 통한 시각적 중요계수(perceptually significant coefficient: PSC)들을 선정하여 선택된 계수들에 대해서만 워터마크 정보를 삽입한다. 지각 모델은 정상상태의 일반화 가우시안 모델(generalized gaussian model)로 추정된 NVF(noise visibility function)로 에지와 텍스쳐영역 그리고 평탄영역에 따라 각각 적응적으로 삽입되게 한다. 이는 각 서브밴드 내의 분산과 형상계수(shape parameter)에 의해 결정된다. 적응적 워터마크의 삽입강도를 갖기 위해 에지와 텍스쳐영역의 삽입강도는 각 서브밴드의 주파수 감도(frequency sensitivity)로 결정되고, 평탄영역의 삽입강도는 영상의 국부적 특성에 근거한 통계적 가중치를 사용한다. 삽입되는 워터마크는 랜덤시퀀스로 N(0,1)이다. 여러 가지 공격에 대한 실험으로 제안한 방법의 비가시성과 강인성을 확인한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.