• Title/Summary/Keyword: nodes

Search Result 8,419, Processing Time 0.032 seconds

Novel Packet Switching for Green IP Networks

  • Jo, Seng-Kyoun;Kim, Young-Min;Lee, Hyun-Woo;Kangasharju, Jussi;Mulhauser, Max
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.275-283
    • /
    • 2017
  • A green technology for reducing energy consumption has become a critical factor in ICT industries. However, for the telecommunications sector in particular, most network elements are not usually optimized for power efficiency. Here, we propose a novel energy-efficient packet switching method for use in an IP network for reducing unnecessary energy consumption. As a green networking approach, we first classify the network nodes into either header or member nodes. The member nodes then put the routing-related module at layer 3 to sleep under the assumption that the layer in the OSI model can operate independently. The entire set of network nodes is then partitioned into clusters consisting of one header node and multiple member nodes. Then, only the header node in a cluster conducts IP routing and its member nodes conduct packet switching using a specially designed identifier, a tag. To investigate the impact of the proposed scheme, we conducted a number of simulations using well-known real network topologies and achieved a more energy- efficient performance than that achieved in previous studies.

A Parallel Processing Method for Partial Nodes in R*-tree Using GPU (GPU를 활용한 R*-tree에서의 부분 노드 병렬 처리 방법)

  • Kim, Seong;Oh, Byoung-Woo
    • Spatial Information Research
    • /
    • v.20 no.6
    • /
    • pp.139-144
    • /
    • 2012
  • The R*-tree manages hierarchical nodes for efficient access of spatial data. We propose a method that maintains partial nodes of R*-tree in the GPU memory to improve efficiency using parallel processing. The proposed method attempts to load as many nodes as possible to the GPU memory. The new nodes are inserted to manage the rest of R*-tree nodes in the main memory. The experimental result shows that the proposed method is more efficient than the main memory based R*-tree.

Number of Mediastinal Lymph Nodes as a Prognostic Factor in PN2 Non Small Cell Lung Cancer: A Single Centre Experience and Review of the Literature

  • Takanen, Silvia;Bangrazi, Caterina;Graziano, Vanessa;Parisi, Alessandro;Resuli, Blerina;Simione, Luca;Caiazzo, Rossella;Raffetto, Nicola;Tombolini, Vincenzo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7559-7562
    • /
    • 2014
  • Currently the most important prognostic factor in lung cancer is the stage. In the current lung TNM classification system, N category is defined exclusively by anatomic nodal location though, in other type of tumours, number of lymph nodes is confirmed to be a fundamental prognostic factor. Therefore we evaluated the number of mediastinal lymph nodes as a prognostic factor in locally advanced NSCLC after multimodality treatment, observing a significant effect of the number of lymph nodes in terms of OS (p<0.01) and DFS (p<0.001): patients with a low number of positive mediastinal nodes have a better prognosis.

A Study on Share Group Configuration Technique for Improving Data Transmission Performance (데이터 전달 성능 향상을 위한 공유 그룹 구성 기법에 관한 연구)

  • Yang, Hwanseok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 2015
  • The various services applied internet have been provided by the rapid development of wireless networks and providing multimedia contents are also increasing. It is caused a number of problems such as increasing of network traffic rapidly. P2P technique is gaining popularity for solving these problems. In particular, P2P technique in a wireless network environment has gained much popularity. Among them, MANET-based P2P techniques has been studied actively. It is not easy to be applied the existing technique as it is due to the dynamic topology and low bandwidth by moving nodes in MANET that is consisted of only mobile nodes. In this paper, we proposed sharing group construction technique for providing a stable connection between mobile nodes and reducing the load of network traffic and overhead of sharing group reconfiguration in order to improve data transmission performance between mobile nodes. The sharing group member nodes applied virtual sharing group generation technique with neighboring nodes of 1-hop distance in order to reduce traffic for file sharing. We performed comparative experiments with DHT technique to evaluate the performance of the proposed technique in this paper and the excellent performance is confirmed through experiments.

A Clustering Algorithm using Self-Organizing Feature Maps (자기 조직화 신경망을 이용한 클러스터링 알고리듬)

  • Lee, Jong-Sub;Kang, Maing-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.3
    • /
    • pp.257-264
    • /
    • 2005
  • This paper suggests a heuristic algorithm for the clustering problem. Clustering involves grouping similar objects into a cluster. Clustering is used in a wide variety of fields including data mining, marketing, and biology. Until now there are a lot of approaches using Self-Organizing Feature Maps(SOFMs). But they have problems with a small output-layer nodes and initial weight. For example, one of them is a one-dimension map of k output-layer nodes, if they want to make k clusters. This approach has problems to classify elaboratively. This paper suggests one-dimensional output-layer nodes in SOFMs. The number of output-layer nodes is more than those of clusters intended to find and the order of output-layer nodes is ascending in the sum of the output-layer node's weight. We can find input data in SOFMs output node and classify input data in output nodes using Euclidean distance. We use the well known IRIS data as an experimental data. Unsupervised clustering of IRIS data typically results in 15 - 17 clustering error. However, the proposed algorithm has only six clustering errors.

Partially Distributed Dynamic Model for Secure and Reliable Routing in Mobile Ad hoc Networks

  • Anand, Anjali;Aggarwal, Himanshu;Rani, Rinkle
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.938-947
    • /
    • 2016
  • A mobile ad hoc network (MANET) is a collection of mobile nodes communicating in an infrastructure-less environment without the aid of a central administrating authority. Such networks entail greater dependency on synergy amongst the nodes to execute fundamental network operations. The scarcity of resources makes it economically logical for nodes to misbehave to preserve their resources which makes secure routing difficult to achieve. To ensure secure routing a mechanism is required to discourage misbehavior and maintain the synergy in the network. The proposed scheme employs a partially distributed dynamic model at each node for enhancing the security of the network. Supplementary information regarding misbehavior in the network is partially distributed among the nodes during route establishment which is used as a cautionary measure to ensure secure routing. The proposed scheme contemplates the real world scenario where a node may exhibit different kinds of misbehavior at different times. Thus, it provides a dynamic decision making procedure to deal with nodes exhibiting varying misbehaviors in accordance to their severity. Simulations conducted to evaluate the performance of the model demonstrate its effectiveness in dealing with misbehaving nodes.

An Energy Efficient Hierarchical Clustering Algorithm for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 계층적 클러스터링 알고리즘)

  • Cha, Si-Ho;Lee, Jong-Eon;Choi, Seok-Man
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.2
    • /
    • pp.29-37
    • /
    • 2008
  • Clustering allows hierarchical structures to be built on the nodes and enables more efficient use of scarce resources, such as frequency spectrum, bandwidth, and energy in wireless sensor networks (WSNs). This paper proposes a hierarchical clustering algorithm called EEHC which is more energy efficient than existing algorithms for WSNs, It introduces region node selection as well as cluster head election based on the residual battery capacity of nodes to reduce the costs of managing sensor nodes and of the communication among them. The role of cluster heads or region nodes is rotated among nodes to achieve load balancing and extend the lifetime of every individual sensor node. To do this, EEHC clusters periodically to select cluster heads that are richer in residual energy level, compared to the other nodes, according to clustering policies from administrators. To prove the performance improvement of EEHC, the ns-2 simulator was used. The results show that it can reduce the energy and bandwidth consumption for organizing and managing WSNs comparing it with existing algorithms.

Energy Efficient and Secure Multipoint Relay Selection in Mobile Ad hoc Networks

  • Anand, Anjali;Rani, Rinkle;Aggarwal, Himanshu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1571-1589
    • /
    • 2016
  • Nodes in MANETs are battery powered which makes energy an invaluable resource. In OLSR, MPRs are special nodes that are selected by other nodes to relay their data/control traffic which may lead to high energy consumption of MPR nodes. Therefore, employing energy efficient MPR selection mechanism is imperative to ensure prolonged network lifetime. However, misbehaving MPR nodes tend to preserve their energy by dropping packets of other nodes instead of forwarding them. This leads to huge energy loss and performance degradation of existing energy efficient MPR selection schemes. This paper proposes an energy efficient secure MPR selection (ES-MPR) technique that takes into account both energy and security metrics for MPR selection. It introduces the concept of 'Composite Eligibility Index' (CEI) to examine the eligibility of a node for being selected as an MPR. CEI is used in conjunction with willingness to provide distinct selection parameters for Flooding and Routing MPRs. Simulation studies reveal the efficiency of ES-MPR in selection of energy efficient secure and stable MPRs, in turn, prolonging the network operational lifetime.

The Challenge of Managing Customer Networks under Change : Proving the Complexity of the Inverse Dominating Set Problem (소비자 네트워크의 변화 관리 문제 : 최소지배집합 역 문제의 계산 복잡성 증명)

  • Chung, Yerim;Park, Sunju;Chung, Seungwha
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.2
    • /
    • pp.131-140
    • /
    • 2014
  • Customer networks go through constant changes. They may expand or shrink once they are formed. In dynamic environments, it is a critical corporate challenge to identify and manage influential customer groups in a cost effective way. In this context, we apply inverse optimization theory to suggest an efficient method to manage customer networks. In this paper, we assume that there exists a subset of nodes that might have a large effect on the network and that the network can be modified via some strategic actions. Rather than making efforts to find influential nodes whenever the network changes, we focus on a subset of selective nodes and perturb as little as possible the interaction between nodes in order to make the selected nodes influential in the given network. We define the following problem based on the inverse optimization. Given a graph and a prescribed node subset, the objective is to modify the structure of the given graph so that the fixed subset of nodes becomes a minimum dominating set in the modified graph and the cost for modification is minimum under a fixed norm. We call this problem the inverse dominating set problem and investigate its computational complexity.

Energy Saving in Cluster-Based Wireless Sensor Networks through Cooperative MIMO with Idle-Node Participation

  • Fei, Li;Gao, Qiang;Zhang, Jun;Wang, Gang
    • Journal of Communications and Networks
    • /
    • v.12 no.3
    • /
    • pp.231-239
    • /
    • 2010
  • In cluster-based wireless sensor networks, the energy could be saved when the nodes that have data to transmit participate in cooperative multiple-input multiple-output (MIMO). In this paper, by making the idle nodes that have no data to transmit participate in the cooperative MIMO, it is found that much more energy could be saved. The number of the idle nodes that participate in the cooperative MIMO is optimized to minimize the total energy consumption. It is also found that the optimal number of all the nodes participating in cooperative communication does not vary with the number of nodes that have data to transmit. The proposition is proved mathematically. The influence of long-haul distance and modulation constellation size on the total energy consumption is investigated. A cooperative MIMO scheme with help-node participation is proposed and the simulation results show that the proposed scheme achieves significant energy saving.