• Title/Summary/Keyword: node length

Search Result 413, Processing Time 0.026 seconds

Video-Assisted Thoracic Surgery Lobectomy: Experience with 36 Cases (비디오 흉강경을 이용한 폐엽절제술: 치험 36예)

  • Lee, Hee-Sung;Lee, Jae-Woong;Kim, Kun-Il;Cho, Sung-Woo;Park, Sang-Jun;Kim, Hyoung-Soo;Shin, Yoon-Cheol;Shin, Ho-Seung
    • Journal of Chest Surgery
    • /
    • v.42 no.6
    • /
    • pp.732-737
    • /
    • 2009
  • Background: Many video-assisted thoracic surgery (VATS) lobectomies are performed as a potential alternative to thoracotomy despite the controversy about the safety and the associated morbidity/mortality rates. Material and Method: Between November 2006 and August 2008, we performed 87 lobectomies (VATS 36, Thoracotomy 51) and we retrospectively reviewed the surgical treatment results. A VATS lobectomy was performed by a 4~5 cm thoracotomy without rib spreading and this included anatomic hilar dissection, individual vessel and bronchus stapling and lymph node dissection. Result: We studied 52 male and 35 female patients whose age ranged from 6 to 79 (average age: $59.8{\pm}15.0$ years). The cases were diagnosed with lung cancer (66) (SQC 24, ADC 38, others 4), pulmonary metastasis (2), carcinoid (2) and benign diseases (17). There was no intraoperative death. Postoperative complications were seen in 5 (15.6%) VATS and 33 (64.7%) thoracotomies, and perioperative death caused by adult respiratory distress syndrome occurred in 1 (2.8%) VATS and 3 (5.9%) thoracotomies. Three patients Underwent conversion to thoracotomy (8.3%). The mean time to chest tube removal was 6 days for VATS and 9.4 days for thoracotomy (p<0.001), and the mean length of the hospital stay was 8 days for VATS and 12.8 days for thoracotomy (p<0.001). Conclusion: VATS lobectomy can be performed safely with low morbidity/mortality rates. Furthermore, all the patients benefited from earlier postoperative rehabilitation and less pain and they were candidates for an earlier return to normal activities.

Growth and Cut Flower Yield of Roses as Affected by Age of Rooted Cuttings (삽목묘의 묘령이 장미의 생장과 수량에 미치는 영향)

  • Park, Yoo Gyeong;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.19 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • This study was conducted to investigate the effect of age of transplants, propagated by cutting, of two cut rose (Rosa hybrida Hort.) cultivars on their subsequent growth and yield in an effort to develop an efficient cutting propagation method for domestic rose cultivars. Two cultivars used in this study were a standard type 'Pink Aurora' and a spray type 'Yellow King'. Cuttings were prepared as single node cuttings each with a five-leaflet leaf and were stuck in rockwool cubes ($5cm{\times}5cm{\times}5cm$, UR, Korea) at two different dates. Cuttings rooted for either 30 (stuck on Jan. 20, 2009) or 48 days (stuck on Jan. 2, 2009) were transplanted into a rockwool slabs ($10cm{\times}15cm{\times}100cm$, UR, Korea) on the same date, 18 Feb. 2009. Plant growth and cut flower quality were investigated for two successive harvests during the period of Jan. to July in 2009. In both cultivars, 48 days old plants showed some growth of the shoot and root before transplanting. However, in the case of 30 days old plants before transplanting no noticeable growth of the shoot and root was obserable in 'Pink Aurora', while only shoot growth, but not root growth to the bottom of the rooting medium, was observed in 'Yellow King'. This suggested cultivar-specific responses that in this experiment a spray type 'Yellow King' showed greater growth rate during the rooting stage than a standard type 'Pink Aurora'. In the measurement of growth and cut flower yield after transplanting, the 48 days old standard type 'Pink Aurora' produced greater number of cut flowers per plant than 30 days old plants, whereas their mean stem fresh weight was recorded smaller than that of the 30 days old plants. For 'Yellow King', 30 days old plants showed greater stem length, flower width, number of five-leaflet leaves per stem, stem fresh weight, and number of cut flowers per plant than 48 days old plants. Therefore, growth and yield were significantly affected by cultivar and age of the rooted cutting, and additional research is needed on the effect of age of rooted cuttings in more cultivars.

The Behaviors of Phosphorus-32 and Ptoassium-42 under the Control of Thermoperiod and Potassium Level (가리(加里)와 온도주기성(溫度週期性)이 고구마 생육(生育) 및 인(燐)-32, 가리(加里)-42 동태(動態)에 미치는 영향(影響))

  • Kim, Y.C.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.1 no.1
    • /
    • pp.89-115
    • /
    • 1968
  • 1. The experiment was carried out for investigating the interaction between potassium nutrition and thermoperiod (as an environment regulating factor) in relation to behaviors of several nutrients including phosphorus-32 and Potassium-42 in IPOMOEA BATAS. 2. To obtain same condition to trace the behaviors of phosphorus and potassum-42 they were simultaneously incorporated to roots. The determination of each CPM by counting twice with adequate interval and calculating true CPM of each isotope according to different half-life, was carried out with satisfactory. 3. Some specific symptoms i.e, chlorosis and withering of growing point under the condition of lower potassium level were found and was accelerated by the low night temperature. 4. A manganese shortage in growing point of the lower potassium level was found by activiation analysis and very low distribution ratio of phosphorus-32 and potassium-42 in the growing point of the lower potassium level was manifested, though the contents of nitrogen, phosphorus, potassium, sodium and magnesium were not in great difference. 5. In addition to the low water content with appearence of "hard", shorterning internode and lower ratio of roots to shoot as well as the symptoms of potassium deficiency such as brown spot in leaf blade and necrosis of leaf margin were appeared at later stage of experiment at the lower potassium level. 6. Very stimulating vegetative growth, e.g, large plant length, leaf expansion, increasing node number and fresh weight as well as high ratio of roots to shoot, high water content was resulted in the condition of higher potassium level. 7. A specific interaction between higher potassium level and thermoperiod was found, that is, the largest tuber production and the largest ratio of roots to shoot were resulted in the combined condition of higher potassium level and constant temperature while the largest plant length, fresh weight etc. i.e. the most stimulative vegetative growth was resulted in the combined condition of higher potassium level and low night temperature. 8. Comparatively low water content in the former condition of stimulative tuber production was resulted(especially at the tuber thickening stage), while high water content in the latter condition of stimulative vegetation was resulted though the higher potassium level made generally high water contents. 9. The nitrogen contents of soluble and insoluble did not make distinct difference between the lower and higher potassium level. 10. Though the phosphorus contents were not distinctly different by the potassium level, the lower potassium level made the percentage of phosphorus increased at tuber forming stage accumulating more phosphorus in roots, while the higher potassium level decreased percentage of phosphorus at that stage. 11. The higher potassium level made distinctly high potassium contents than the lower potassium level and increased contents at the tuber forming stage through both conditions. 12. The sodium contents were low in the condition of higher potassium level than the lower potassium level and decreased at tuber forming stage in both conditions, on the contary of potassium. 13. Except the noticeable deficeney of manganese in the growing point of the lower potassium level, mangense and magnesium contents in other organs did not make distinct difference according to the potassium level. 14. Generally more uptake and large absorption rate of phosphorus-32 and potassium-42 were resulted at the higher potassium level, and the most uptake, and the largest absorption rate of phosphorus and potassium-42 (especially potassium-42 at tuber forming stage) were resulted in the condition of higher potassium level and constant temperature which made the highest tuber production. 15. The higher potassium level stimulated the translocation of phoshorus-32 and potassium-42 from roots to shoots while the lower potassium level suppressed or blocked the translocation. 16. Therefore, very large distribution rate of $p^{32}$, $K^{42}$ in shoot, especially, in growing point, compared with roots was resulted in the higher potassium level. 17. The lower potassium level suppressed the translocation of phosporus-32 from roots to shoot more than that of potassium-42. 18. The uptake of potassium-42 and translocation in IPOMOEA BATATAS were more vivid than phosphorus-32. 19. A specific interaction between potassium nutrition and thermoperiod which resulted the largest tuber production etc. was discussed in relation to behaviors of minerals and potasium-42 etc. 20. Also, the specific effect of the lower and higher potassium level on the growth pattern of IPOMOEA BATATAS were discussed in relation to behaviors of minerals and isotopes. 21. An emphasize on the significance of the higher potassium level as well as the interaction with the regulating factor and problem of potassium level (gradient) for crops product ion were discussed from the point of dynamical and variable function of potassium.

  • PDF