• Title/Summary/Keyword: nocturnal surface inversion layer

Search Result 12, Processing Time 0.015 seconds

Generation mechanisms of coastal low level jets associated with baroclinicity along the Texas Gulf coast (텍사스 연안의에 의한 연안저층 제트의 생성 역학)

  • ChoiHyo
    • 한국해양학회지
    • /
    • v.20 no.2
    • /
    • pp.28-39
    • /
    • 1985
  • The driving mechanisms for low level jets(LLJ) and coastal surface maximum winds are studied with observed wind data from June, 1976 through August, 1980 at Port Aransas and Victoria, Texas, in connection with a baroclinic model. This model is developed considering the forcing functions such as the synoptic and meso-scale pressure gradient, the frictional force, and the atmospheric stability. The results show that a LLJis observed on over 95% of the occasions when a nighttime coastal wind maximum occurred. Baroclinicity generated by sloping terrain during the summertime causes the diurnal variation in the thermal field. This thermal wind component would then decrease the prevailing synoptic-scale southerly wind by day and allow it to increase at night. Nighttime atmospheric stability leads to frictional decoupling which enhances the nocturnal LLJ. At the coastal site neutral stability prevails, thus all owing downward transfer of momentum from the nocturnal LLJ and results in the nocturnal coastal surface wind maximum. The height of LLJis not uniquely related to the inversion layer, and the results of the computations using this model show a good agreement with the observations.

Numerical Prediction on Snowfall Intensity in the Mountainous Coastal Region

  • Choi, Hyo;Lee, Han-Se;Kim, Tae-Kook;Choi, Doo-Sun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.89-94
    • /
    • 2003
  • The formation of a severe snow storm occurred in the mountainous coastal region near Mt. Taegualyang and Kangnung city in the eastern part of Korea was investigate from 0900LST, December 7 through 9, 2002, using MM5 model. As synoptic scale easterly wind induced a great amount of moisture from the East Sea into the inland coastal region and sea-breeze further induced more moisture from the basin toward the top of the mountain side. The lifted moisture toward the mountain top was cooled down along the eastern slope of the mountain and near the mid of the mountain the moisture was much cooled down with relative humidity of 100% under the air temperature below $O^{\circ}C$, resulting in the formation of snow. Relative humidity of 100% generally occurred at the 5km away from the coast toward the inland mountain and the band of 100% RH was parallel to the coastal line. The 100% band coincided with minimum air temperature band and line.

  • PDF