• Title/Summary/Keyword: nociceptive

Search Result 265, Processing Time 0.024 seconds

Inhibition of angiotensin converting enzyme increases PKCβI isoform expression via activation of substance P and bradykinin receptors in cultured astrocytes of mice

  • Jae-Gyun Choi;Sheu-Ran Choi;Dong-Wook Kang;Hyun Jin Shin;Miae Lee;Jungmo Hwang;Hyun-Woo Kim
    • Journal of Veterinary Science
    • /
    • v.24 no.2
    • /
    • pp.26.1-26.11
    • /
    • 2023
  • Background: Angiotensin-converting enzyme inhibitor (ACEi) inhibits the catalysis of angiotensin I to angiotensin II and the degradation of substance P (SP) and bradykinin (BK). While the possible relationship between ACEi and SP in nociceptive mice was recently suggested, the effect of ACEi on signal transduction in astrocytes remains unclear. Objectives: This study examined whether ACE inhibition with captopril or enalapril modulates the levels of SP and BK in primary cultured astrocytes and whether this change modulates PKC isoforms (PKCα, PKCβI, and PKCε) expression in cultured astrocytes. Methods: Immunocytochemistry and Western blot analysis were performed to examine the changes in the levels of SP and BK and the expression of the PKC isoforms in primary cultured astrocytes, respectively. Results: The treatment of captopril or enalapril increased the immunoreactivity of SP and BK significantly in glial fibrillary acidic protein-positive cultured astrocytes. These increases were suppressed by a pretreatment with an angiotensin-converting enzyme. In addition, treatment with captopril increased the expression of the PKCβI isoform in cultured astrocytes, while there were no changes in the expression of the PKCα and PKCε isoforms after the captopril treatment. The captopril-induced increased expression of the PKCβI isoform was inhibited by a pretreatment with the neurokinin-1 receptor antagonist, L-733,060, the BK B1 receptor antagonist, R 715, or the BK B2 receptor antagonist, HOE 140. Conclusions: These results suggest that ACE inhibition with captopril or enalapril increases the levels of SP and BK in cultured astrocytes and that the activation of SP and BK receptors mediates the captopril-induced increase in the expression of the PKCβI isoform.

Neuropathic pain feature in cancer-induced bone pain: does it matter? a prospective observational study

  • Nantthasorn Zinboonyahgoon;Choopong Luansritisakul
    • The Korean Journal of Pain
    • /
    • v.36 no.2
    • /
    • pp.253-267
    • /
    • 2023
  • Background: Cancer-induced bone pain (CIBP) is considered to have both nociceptive and neuropathic components. However, the prevalence, risk factors, and impact of the neuropathic components are yet poorly understood. Methods: We estimate the prevalence of neuropathic pain (NP) features in patients with CIBP at a tertiary care pain clinic setting using the Douleur Neuropathique 4 questionnaire and evaluate their associated factors and their impact after 4 weeks of treatment using the Brief Pain Inventory questionnaire and the Edmonton Symptom Assessment System. Results: A total of 133 patients were recruited. The estimated prevalence of NP was 30.8% (95% confidence interval: 23.6%-39.1%). Initially, the patients with NP had significantly higher average pain scores (6.00 vs. 5.05, P = 0.006), higher total interference scores (5.84 vs. 4.89, P = 0.033), and symptom distress scores (35.88 vs. 26.52, P = 0.002). After 4 weeks of treatment, patients in both groups reported significantly decreased pain intensity and improved quality of life. However, the patients with NP still reported significantly higher average pain (4.61 vs. 3.58, P = 0.048), trending toward higher total interference scores (3.52 vs. 2.99, P = 0.426), and symptom distress scores (23.30 vs. 20.77, P = 0.524). From multivariate analysis, the independent risk factors for NP were younger age, pain in the extremities, and higher average pain scores. Conclusions: NP are common in patients with CIBP. These conditions negatively affect pain intensity and the patient's quality of life before and after treatment.

α-Pinene Attenuates Methamphetamine-Induced Conditioned Place Preference in C57BL/6 Mice

  • Chan Lee;Jung-Hee Jang;Gyu Hwan Park
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.411-416
    • /
    • 2023
  • Methamphetamine (METH) is a powerful neurotoxic psychostimulant affecting dopamine transporter (DAT) activity and leading to continuous excess extracellular dopamine levels. Despite recent advances in the knowledge on neurobiological mechanisms underlying METH abuse, there are few effective pharmacotherapies to prevent METH abuse leading to brain damage and neuropsychiatric deficits. α-Pinene (APN) is one of the major monoterpenes derived from pine essential oils and has diverse biological properties including anti-nociceptive, anti-anxiolytic, antioxidant, and anti-inflammatory actions. In the present study, we investigated the therapeutic potential of APN in a METH abuse mice model. METH (1 mg/kg/day, i.p.) was injected into C57BL/6 mice for four alternative days, and a conditioned place preference (CPP) test was performed. The METH-administered group exhibited increased sensitivity to place preference and significantly decreased levels of dopamine-related markers such as dopamine 2 receptor (D2R) and tyrosine hydroxylase in the striatum of the mice. Moreover, METH caused apoptotic cell death by induction of inflammation and oxidative stress. Conversely, APN treatment (3 and 10 mg/kg, i.p.) significantly reduced METH-mediated place preference and restored the levels of D2R and tyrosine hydroxylase in the striatum. APN increased the anti-apoptotic Bcl-2 to pro-apoptotic Bax ratio and decreased the expression of inflammatory protein Iba-1. METH-induced lipid peroxidation was effectively mitigated by APN by up-regulation of antioxidant enzymes such as manganese-superoxide dismutase and glutamylcysteine synthase via activation of nuclear factor-erythroid 2-related factor 2. These results suggest that APN may have protective potential and be considered as a promising therapeutic agent for METH-induced drug addiction and neuronal damage.

Korean Pain Descriptors in Patients with Neuromusculoskeletal Pain (신경근골격계 환자들의 한국어 통증 표현)

  • Park, Gi-Young;Kwon, Dong Rak;Woo, In Ho
    • Clinical Pain
    • /
    • v.18 no.2
    • /
    • pp.82-87
    • /
    • 2019
  • Objective: To evaluate which Korean pain descriptors are frequently used in the patients with neuromusculoskeletal diseases and compare the frequency of Korean pain descriptor according to age, gender, pain pattern and intensity, and clinical diagnosis. Method: Two hundreds sixty nine patients with neuromusculoskeletal diseases were enrolled in this study. The patients were asked to fill out a pain questionnaire using Korean. The Korean pain descriptors were collected and classified according to neurophysiological mechanism. The frequency of Korean pain descriptor was analyzed by age, gender, pain pattern and intensity, and clinical diagnosis. They were divided into axial spine and peripheral joint pain group depending on the location of causal disease and shoulder pain descriptors were divided into intra-articular and bursa group. Results: Among 24 Korean pain descriptors, 'arida' was the most common pain descriptor, followed by 'ssusida' and 'jjireunda'. When the pain descriptors were classified according to neurophysiological mechanism, superficial somatic pain was the most common, followed by deep somatic pain. There was a significant difference in the frequency of the pain descriptor between axial spine and peripheral joint pain group (p=0.007). The pain descriptor 'danggida' was used significantly more in the patients with axial spine pain than peripheral joint pain (p=0.024). However, there was no significant difference in other factors. Conclusion: The patients with neuromusculoskeletal diseases expressed their pain using various Korean pain descriptors with stabbing nature and superficial somatic pain. Our results may be helpful to assess and develop a new Korean pain quality measure in the patients with neuromusculoskeletal diseases.

Coexpression of $P2X_3$ with TRPV1 in the Rat Trigeminal Sensory Nuclei (흰쥐 삼차신경감각핵에서 $P2X_3$와 TRPV1의 공존에 관한 연구)

  • Moon, Yong-Suk;Ryoo, Chang-Hyun;Cho, Yi-Sul;Kim, Hong-Tae;Park, Mae-Ja;Paik, Sang-Kyoo;Moon, Che-Il;Kim, Yun-Sook;Bae, Yong-Chul
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.151-157
    • /
    • 2008
  • Trigeminal primary afferents expressing $P2X_3$ or transient receptor potential vanilloid 1 (TRPV1) are involved in the transmission of nociceptive information. In order to characterize $P2X_3$- and TRPV1-immunopositive neurons in the trigeminal ganglion (TG) and trigeminal caudal nucleus (Vc), we performed immunofluorescence experiments using anti-$P2X_3$ and anti-TRPV1 antisera and a morphometric analysis. 77.4% (1,401/1.801) of all the $P2X_3$-postive neurons coexpressed TRPV1 and 51.9% (1,401/2,698) of all the THFV1-immunopositive neurons also costained for $P2X_3$ in the TG. Immunoreactivity for both $P2X_3$ and TRPV1 were present in medium-sized neurons but not in small- and large-sized neurons. $P2X_3$ and/or TRPV1-immunopositive fibers were observed in the primary afferents and their associated axons in the Vc. These fibers and terminals were distributed in the superficial lamina of Vc: $P2X_3$-immunopositive fibers and terminals were distributed in the lamina I and II, expecially in the inner part of lamina II (lamina IIi), whereas TRPV1-immunopositive ones were densely detected in the lamina I and outer part of lamina II (lamina IIo). Immunopositive fibers and terminals for both $P2X_3$ and TRPV1 were observed on the border between lamina IIi and IIo. These results suggest that terminals coexpressing $P2X_3$ and TRPV1 are involved in specific roles in the transmission and processing of orofacial nociceptive information.

Characterization of Trigeminal Ganglion Neurons Expressing Transient Receptor Potential Ankyrin 1 (TRPA1) in the Rat (흰쥐의 삼차신경절에서 Transient receptor potential ankyrin 1 (TRPA1)의 발현 특성에 관한 연구)

  • Paik, Sang-Kyoo;Na, Yeon-Kyung;Kim, Yun-Sook
    • Applied Microscopy
    • /
    • v.42 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • Transient receptor potential ankyrin 1 (TRPA1), responding to noxious cold (${\leq}17^{\circ}C$) and pungent compounds, is implicated in nociception, but little is known about the coexpression of TRPA1 and other channels or receptors involved in the nociception in craniofacial regions. To address this issue, we characterized the TRPA1-immunopositive (+) neurons in the rat trigeminal ganglion (TG) and investigated their colocalization with other proteins known to be expressed in nociceptive neurons, such as transient receptor potential vanilloid (TRPV1) and $P2X_3$ receptor, using light microscopic immunofluorescence labeling method with TRPA1 and TRPV1 or $P2X_3$ antisera. The majority of TRPA1+ neurons costained for TRPV1 (TRPV1+/TRPA1+; 58.8%, 328/558) and 41.2% only expressed TRPA1 but not TRPV1. The TRPV1+/TRPA1+ neurons were small and medium sized. In addition, we investigated the colocalization of TRPA1 with $P2X_3$, a nonselective cation channel activated by ATP that may be released in the extracellular space as a result of tissue damage and inflammation. Among all TRPA1+ TG neurons, 26.1% (310/1186) costained for $P2X_3$, whereas 73.9% (876/1186) of TRPA1+ neurons did not coexpress $P2X_3$. $P2X_3$+/TRPA1+ neurons were predominantly small and medium sized. These results suggest that TRPA1+ neurons coexpressing TRPV1 or $P2X_3$ are involved in specific roles in the transmission and processing of orofacial nociceptive information by noxious cold, heat, and inflammation.

Analgesic Effect of Grape Seed Proanthocyanidin Extract in Fibromyalgia Animal Model (섬유근통 동물 모델에서 포도씨 추출 proanthocyanidin의 진통 효과)

  • Mun, Hyun-Il;Kim, Seong-Ho;Jang, Tae-Jung;Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.496-502
    • /
    • 2010
  • The acidic saline animal model of pain has been suggested to mimic fibromyalgia (FM). Oligomeric proanthocyanidin complexes (OPC) from grape seeds are known to act as an antioxidant. We studied the effects of OPC on the pain threshold in the acidic saline animal model of pain. The left gastrocnemius muscle was injected with $100\;{\mu}l$ of saline at pH 4.0 under brief isoflurane anesthesia on days 0 and 5. Control rats (n=5) received identical injections of physiological saline (pH 7.2) on the same schedule. Rats (n=10) with acidic saline injection were separated into two study subgroups. After measurement of pre-drug pain thresholds, rats were injected intraperitoneally with either saline or OPC 300 mg/kg. Paw withdrawal thresholds to pressure were again measured 60 min after intraperitoneal injection. Nociceptive thresholds were measured with a Dynamic Plantar Aesthesiometer by applying an increasing pressure to right or left hind paw until the rat withdrew the paw. Compared to baseline (day 0), acid injections produced mechanical hyper-responsiveness on day 7 (pre-drug) in these rats [p<0.05]. A potent antihyperalgesic effect was observed when rats were injected intraperitoneally with OPC 300 mg/kg [injected paw, p=0.001; contralateral paw, p=0.002]. OPC treatment decreased the expression of acid sensing ion channel 3 in the brain motor cortex area on immunohistochemical staining when OPC 300 mg/kg was administered intraperitoneally in the animal model of FM pain [p<0.05]. Further research is required to determine the efficacy of OPC treatments in FM pain in humans.

Effects of tianeptine on symptoms of fibromyalgia via BDNF signaling in a fibromyalgia animal model

  • Lee, Hwayoung;Im, Jiyun;Won, Hansol;Nam, Wooyoung;Kim, Young Ock;Lee, Sang Won;Lee, Sanghyun;Cho, Ik-Hyun;Kim, Hyung-Ki;Kwon, Jun-Tack;Kim, Hak-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.4
    • /
    • pp.361-370
    • /
    • 2017
  • Previous reports have suggested that physical and psychological stresses may trigger fibromyalgia (FM). Stress is an important risk factor in the development of depression and memory impairments. Antidepressants have been used to prevent stress-induced abnormal pain sensation. Among various antidepressants, tianeptine has been reported to be able to prevent neurodegeneration due to chronic stress and reverse decreases in hippocampal volume. To assess the possible effect of tianeptine on FM symptoms, we constructed a FM animal model induced by restraint stress with intermittent cold stress. All mice underwent nociceptive assays using electronic von Frey anesthesiometer and Hargreaves equipment. To assess the relationship between tianeptine and expression levels of brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), and phosphorylated cAMP response element-binding protein (p-CREB), western blotting and immunohistochemistry analyses were performed. In behavioral analysis, nociception tests showed that pain threshold was significantly decreased in the FM group compared to that in the control group. Western blot and immunohistochemical analyses of medial prefrontal cortex (mPFC) and hippocampus showed downregulation of BDNF and p-CREB proteins in the FM group compared to the control group. However, tianeptine recovered these changes in behavioral tests and protein level. Therefore, this FM animal model might be useful for investigating mechanisms linking BDNF-CREB pathway and pain. Our results suggest that tianeptine might potentially have therapeutic efficacy for FM.

Effects of Red or Black Ginseng Extract in a Rat Model of Inflammatory Temporomandibular Joint Pain (흰 쥐의 턱관절 염증성 통증모델에서 홍삼 및 흑삼추출물의 효과)

  • Lee, Hyeon-Jeong;Kim, Yun-Kyung;Choi, Ja-Hyeong;Lee, Jung-Hwa;Kim, Hye-Jin;Seong, Mi-Gyung;Lee, Min-Kyung
    • Journal of dental hygiene science
    • /
    • v.17 no.1
    • /
    • pp.65-72
    • /
    • 2017
  • Temporomandibular joint (TMJ) pain is characterized by persistent jaw pain associated with dysfunction and tenderness of the temporomandibular muscles and joints. The aim of this study was to investigate whether treatment with red or black ginseng extract helps in the modulation of inflammatory TMJ pain. Male Sprague-Dawley rats weighing 220~260 g were used. The experimental group was subdivided into 4 groups based on the treatment method (n=6, each group): formalin (5%, $30{\mu}l$), formalin after distilled water (vehicle), formalin after red or black ginseng extract (per oral, single or repeated, respectively). To induce TMJ pain, $30{\mu}l$ of formalin was injected into the articular cavity under ether inhalation anesthesia. The number of noxious behavioral responses of scratching the facial region proximal to the injection site was recorded for 9 successive 5-min intervals following formalin injection. Repeated treatment with red or black ginseng extract reduced the nociceptive responses in the second phase (11~45 min). Nuclear factor erythroid 2-related factor 2 (Nrf2) is an oxidative stress-mediated transcription factor. Both ginsengs significantly down-regulated the increased Nrf2 level compared to the vehicle group. In the test for liver and kidney functions, repeated treatment with red or black ginseng was not different compared to the vehicle group. These results indicate that red and black ginseng extract might be promising analgesic agents in the treatment of inflammatory TMJ pain.

Calcium Channel Blockers Suppress the Responses of Rat Dorsal Horn Cell to Nociceptive Input (쥐 척수후각세포의 유해자극 반응에 대한 칼슘이온통로 차단제의 억제작용)

  • Kang, Sok-Han;Kim, Kee-Soon;Shin, Hong-Kee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.625-637
    • /
    • 1997
  • Calcium ions are implicated in a variety of physiological functions, including enzyme activity, membrane excitability, neurotransmitter release, and synaptic transmission, etc. Calcium antagonists have been known to be effective for the treatment of exertional angina and essential hypertension. Selective and nonselective voltage-dependent calcium channel blockers also have inhibitory action on the acute and tonic pain behaviors resulting from thermal stimulation, subcutaneous formalin injection and nerve injury. This study was undertaken to investigate the effects of iontophoretically applied $Ca^{++}$ and its antagonists on the responses of WDR (wide dynamic range) cells to sensory inputs. The responses of WDR cells to graded electrical stimulation of the afferent nerve and also to thermal stimulation of the receptive field were recorded before and after iontophoretical application of $Ca^{++}$, EGTA, $Mn^{++}$, verapamil, ${\omega}-conotoxin$ GVIA, ${\omega}-conotoxin$ MVIIC and ${\omega}-agatoxin$ IVA. Also studied were the effects of a few calcium antagonists on the C-fiber responses of WDR cells sensitized by subcutaneous injection of mustard oil (10%). Calcium ions and calcium channel antagonists ($Mn^{++}$, verapamil, ${\omega}-conotoxin$ GVIA & ${\omega}-agatoxin$ IVA) current-dependently suppressed the C-fiber responses of WDR cells without any significant effects on the A-fiber responses. But ${\omega}-conotoxin$ MVIIC did not have any inhibitory actions on the responses of WDR cell to A-fiber, C-fiber and thermal stimulation. Iontophoretically applied EGTA augmented the WDR cell responses to C-fiber and thermal stimulations while spinal application of EGTA for about $20{\sim}30\;min$ strongly inhibited the C-fiber responses. The augmenting and the inhibitory actions of EGTA were blocked by calcium ions. The WDR cell responses to thermal stimulation of the receptive field were reduced by iontophoretical application of $Ca^{++}$, verapamil, ${\omega}-agatoxin$ IVA, and ${\omega}-conotoxin$ GVIA but not by ${\omega}-conotoxin$ MVIIC. The responses of WDR cells to C-fiber stimulation were augmented after subcutaneous injection of mustard oil (10%, 0.15 ml) into the receptive field and these sensitized C-fiber responses were strongly suppressed by iontophoretically applied $Ca^{++}$, verapamil, ${\omega}-conotoxin$ GVIA and ${\omega}-agatoxin$ IVA. These experimental findings suggest that in the rat spinal cord, L-, N-, and P-type, but not Q-type, voltage-sensitive calcium channels are implicated in the calcium antagonist-induced inhibition of the normal and the sensitized responses of WDR cells to C-fiber and thermal stimulation, and that the suppressive effect of calcium and augmenting action of EGTA on WDR cell responses are due to changes in excitability of the cell.

  • PDF