• Title/Summary/Keyword: no-cement

Search Result 895, Processing Time 0.026 seconds

Properties of Hot Weather Nuclear Power Plant Concrete with Water Cooling Method and Retarding used (배합수 냉각방법 및 지연제 사용에 따른 서중 원전콘크리트의 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Jang, Seok-Soo;Yeo, In-Dong;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4602-4609
    • /
    • 2013
  • In summer and winter, the difference between the temperature during the day and that during the night is high, which leads to various problems during concrete placement, such as cracks and defects in the concrete as well as low durability and strength. Although nuclear power plant concrete is widely used for placement in all seasons, particular attention must be paid to its quality during the summer. Therefore, we evaluated the effects of a cooling method for mixing water, which is a commonly used hot weather precooling method, and the use of a retarder, on the characteristics of Nuclear Power Plant concrete. In the cooling method for mixing water, cold water at 5 was used, with 50% of the water content consisting of ice flakes. The effects of using a retarder were evaluated by reviewing the characteristics of the cement at the unset stage and after hardening. To evaluate the characteristics of the unset cement, we measured the slump, air volumes, setting times, and pressure strengths after hardening. Furthermore, we measured the heat of hydration at different temperatures; the loss of heat was minimized using insulation. Both the slump time and the complete ageing time of the air volume were found to be 120 min at $20^{\circ}C$ and 40 min at $40^{\circ}C$. In the case when the cooling method for mixing water was used and in the case when a retarder was used, the initial and final sets by penetration resistance were delayed, and the delay decreased with increasing air temperature. For the heat of hydration, the cooling method for mixing water not only lowered the maximum temperature but also delayed its attainment. However, the use of a retarder had no effect on the maximum temperature. Moreover, in the early ages (e.g., 3 and 7 days), the pressure strength of the concrete was lower than that of plain cement. However, the strength of 28-day concrete met the standard construction specifications.

A study of Geotechnical Property of Stone Filler and Sewage Dredged Soil as Construction Materials (하수준설토와 석분의 건설재료로 재활용을 위한 지반물성연구)

  • Chung, Jae-Wook;Jang, Yeon-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.8-15
    • /
    • 2007
  • Geotechnical and environmental properties of stone fillers are analyzed by several laboratory experiment to identify the possibility of recycling fillers and sewage dredged soils as construction materials. The result of geotechnjical test shows that the sewage dredged soil is a sandy soil which contains 70-80% sand and is useful as an aggregate of construction site. Stone filler has large fine content, which may disqualifies the use as construction materials. However, this material is still useful as a filler in stone quarries or finished mines. From the environmental test, the liquids leached from two types of materials have satisfied the standard of chemical substances in the soil environment law and no harmful effect in ground pollution is expected when recycling.

An Experimental Study on the Quality and Crack Healing Properties of Self-Healing Mortar Containing Solid Capsules using Crystal Growth Type Inorganic Materials (결정성장형 무기재료 활용 고상 캡슐을 혼합한 자기치유 모르타르의 품질 및 균열 치유 특성에 관한 실험적 연구)

  • Oh, Sung-Rok;Kim, Cheol-Gyu;Nam, Eun-Joon;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.120-128
    • /
    • 2020
  • In this study, solid capsules using crystal growth-type inorganic materials that can be directly mixed with mortar were prepared. Thus, three levels of solid capsules were prepared. The prepared solid capsule was mixed with 3% of the cement mass, was evaluated quality and crack healing properties of the mortar. As a test results of the table flow and air content of the mortar mixed with the solid capsules showed that mix of the solid capsules was no effect on the table flow and air volume. As a test result of the crack healing properties of the mortar mixed with the solid capsule according to water flow test and crack closing test, the initial flow rate was decreased, it was confirmed that the reaction product occurred over time and the cracks were healed.

Evaluation of impact resistance of high performance fiber reinforced cementitious composites under high-speed projectile crash (고속 비상체 충돌에 대한 고성능 섬유보강 시멘트 복합체의 방호성능 평가)

  • Moon, Jae-Heum;Park, Jung-Jun;Park, Gi-Joon;Cho, Hyun-Woo;Kim, Sung-Wook;Lee, Jang-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4950-4959
    • /
    • 2015
  • The importance of public infrastructures' protection against crash or blast loads has been emerging issue as structures are becoming bigger and population densities in downtown cities are growing up. However, there exists no sufficient study which considers the developments of protective building materials, that are essential for protective design and construction. To assess the protection performance and the applicability as protective materials of high performance fiber reinforced cementitious composites(HPFRCC), this study performed the impact tests with 40 mm gas-gun propelled projectile crash machine. From this study, it has observed that both high compressive strength of cement matrix and fiber reinforcement are beneficial for the improvement of impact resistance.

Synthesizing and Assessing Fire-Resistant Geopolymer from Rejected Fly Ash

  • An, Eung-Mo;Cho, Young-Hoon;Chon, Chul-Min;Lee, Dong-Gyu;Lee, Sujeong
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.253-263
    • /
    • 2015
  • Ordinary Portland cement is a widely favored construction material because of its good strength and durability and its reasonable price; however, spalling behaviour during fire exposure can be a serious risk that can lead to strength degradation or collapse of a building. Geopolymers, which can be synthesized by mixing aluminosilicate source materials such as metakaolin and fly ash, and alkali activators, are resistant to fire. Because the chemical composition of geopolymers controls the properties of the geopolyers, geopolymers with various Si:Al ratios were synthesized and evaluated as fire resistant construction materials. Rejected fly ash generated from a power plant was quantitatively analyzed and mixed with alkali activators to produce geopolymers having Si:Al ratios of 1.5, 2.0, and 3.5. Compressive strength of the geopolymers was measured at 28 days before and after heating at $900^{\circ}C$. Geopolymers having an Si:Al ratio of 1.5 presented the best fire resistance, with a 44% increase of strength from 29 MPa to 41 MPa after heating. This material also showed the least expansion-shrinkage characteristics. Geopolymer mortar developed no spalling and presented more than a 2 h fire resistance rating at $1,050^{\circ}C$ during the fire testing, with a cold side temperature of $74^{\circ}C$. Geopolymers have high potential as a fire resistant construction material in terms of their increased strength after exposure to fire.

Effect of rock flour type on rheology and strength of self-compacting lightweight concrete

  • Mazloom, Moosa;Homayooni, Seyed Mohammad;Miri, Sayed Mojtaba
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.199-207
    • /
    • 2018
  • With the development of concrete technology, producing concrete products that have the ability to flow under their own weights and do not need internal or external vibrations is an important achievement. In this study, assessments are made on using travertine, marble and limestone rock flours in self-compacting lightweight concrete (SCLC). In fact, the effects of these powders on plastic and hardened phases of SCLC are studied. To address this issue, concrete mixtures with water to cementitious materials ratios of 0.42 and 0.45 were used. These mixtures were made with 0 and 10% silica fume (SF) replacement levels by cement weight. To achieve lightweight concrete, lightweight expanded clay aggregate (Leca) with the bulk density of about $520kg/m^3 $was utilized. Also two kinds of water were consumed involving tap water and magnetic water (MW) for investigating the possible interaction of MW and rock flour type. In this study, 12 mixtures were studied, and their specific weights were in the range of $1660-1692kg/m^3$. To study the mixtures in plastic phase, tests such as slump flow, J-ring, V-funnel and U-box were performed. By using marble and travertine powders instead of limestone flour, the plastic viscosities and rheology were not changed considerably and they remained in the range of regulations. Moreover, SCLC showed better compressive strength with travertine, and then with marble rock flours compared to limestone powders. According to the results of the conducted study, MW showed better performance in both fresh and hardened phases in all the mixes, and there was no interaction between MW and rock flour type.

FRACTURE STRENGTH OF THE IPS EMPRESS CROWN : THE EFFECT OF OCCLUSAL DEPTH AND AXIAL INCLINATION ON LOWER SECOND PREMOLAR (IPS Empress 도재관의 파절강도 : 하악 제2소구치에서 교합면 두께와 축면 경사도에 따른 영향)

  • Kim Hee-Jin;Lee Hae-Hyoung;Nam Young-Sung;Dong Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.5
    • /
    • pp.441-450
    • /
    • 2002
  • The purpose of this study was compare the fracture strength of the IPS Empress ceramic crown according to the occlusal depth (1.5mm, 2.0mm, 2.5mm) and axial inclination ($4^{\circ},\;8^{\circ},\;12^{\circ}$) of the lower second premolar. After 10 metal dies were made for each group, the IPS Empress ceramic crowns were fabricated and cemented with resin cement. The cemented crowns were mounted on the testing jig with inclination of 30 degrees and the universal testing machine was used to measure the fracture strength. The results of this study were as follows : 1. The fracture strength of the ceramic crown with 2.5mm depth and $12^{\circ}$ inclination was the highest (1284 N). Crowns of 1.5mm depth and $8^{\circ}$ inclination had the lowest strength (951 N). 2. There were no significant differences in the fracture strength by axial inclination of the same occlusal depth group. 3. Most fracture lines began at the loading area and extended through proximal surface perpendicular to the margin, irrespective of occlusal depth.

A STUDY ON THE MARGINAL FIDELITIES AND FRACTURE STRENGTH OF IPS EMPRESS $2^(R)$ CERAMIC CROWNS (IPS Empress $2^(R)$를 이용한 전부도재관의 변연적합성과 파절강도에 관한 연구)

  • Yu, Ji-Hyoung;Kim, Yong-Cheol;Kang, Dong-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.606-617
    • /
    • 2000
  • The purpose of this study was to measure the marginal fidelities and the fracture strength of IPS Empress $2^{(R)}\;and\;In-Ceram^{(R)}$ ceramic crowns. After constructed of 12 experimental dies for each group, ceramic crowns were fabricated on the metal master dies prepared on the maxillary right premolar Marginal gaps were measured on the specimen between the margin of each crown and finish-ing line of the metal master die by using stereo-microscope($SZ-ST^{(R)}$ Olympus, Japan) and all specimens were cemented on the metal master die with Bistite $II^{(R)}$ (Tokuyama soda Co, LTD., Japan) resin cement. Finally marginal gaps were measured again. To measure of the fracture strength, buccal incline on the functional cusp of specimens were loaded until the catastrophic failure occurred by using the AGS-1000 $D^{(R)}$(Shimadzu, Japan). The result of marginal fidelities and fracture strength were statistically analyzed with the SPSS version 8.0 programs. The results of this study were as follows : 1. No significant difference was found in the mean marginal fidelities and fracture strength between the IPS Empress $2^{(R)}\;and\;In-Ceram^{(R)}$. 2. In comparison of marginal fidelities between before and after cementation, there was significant difference(P<0.05). The IPS Empress 2 system was shown in this study that had good marginal fidelities and fracture strength compared to In-Ceram ceramics. Although this system was acceptable to clinical applications, the system still has to be considered long-term researches about marginal fidelities and fracture strength due to the lack of data about the clinical researches.

  • PDF

Fracture Strength of IPS Empress Crown : The Effect of Incisal Reduction and Axial Inclination on Lower Canine (IPS Empress 도재관의 파절강도 : 하악 견치에서 절단연 삭제량과 축면 경사도에 따른 영향)

  • Jung, Young-Chan;Shin, Dong-Kuk;Park, Eun-Ju;Kim, Min-Jeong;Dong, Jin-Keun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.20 no.1
    • /
    • pp.19-29
    • /
    • 2004
  • The purpose of this study was to compare the fracture strength of the IPS Empress ceramic crown according to the incisal reduction(2.0mm, 2.5mm, 3.0mm) and axial inclination ($4^{\circ}$, $8^{\circ}$, $12^{\circ}$) of the lower canine. After 10 metal dies were made for each group, the IPS Empress ceramic crowns were fabricated and each crown was cemented on each metal die with resin cement. The cemented crowns mounted on the testing jig were inclined 30 degrees and a universal testing machine was used to measure the fracture strength. The results of this study were as follows : 1. The fracture strength of the ceramic crown with 3.0mm depth and $12^{\circ}$ inclination was the highest(1377N). Crowns of 2.0mm depth and $4^{\circ}$ inclination had the lowest strength (731 N). 2. There were no significant differences of the fracture strength by axial inclination in same incisal reduction group. 3. The fracture mode of the crowns was similar. Most of fracture lines began at the loading area and extended through proximal surface perpendicular to the margin irrespective of incisal reduction.

Experiment of Shear Behavior of Reinforced Concrete Beams with High Volume Fly Ash (하이 볼륨 플라이애쉬 철근콘크리트 보의 전단거동 실험)

  • Yoo, Sung-Won;Lee, Hyung-Jib
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.525-532
    • /
    • 2014
  • It is known that the best way to recycle fly ash is to use in concrete. It is impossible to bury in the ground this fly ash recently, so it is trying to use high volume fly ash concrete. Nevertheless, recent main research topics are focused in the part of material only, however, it is necessary to perform the research about structural shear behavior. Therefore, in this paper, 27 test members were manufactured with 3 test variables, namely fly ash replacement ratio 0, 35%, 50%, concrete compressive strength 20, 40, 60 MPa and 3 shear stirrups amounts. 27 test members were tested for shear behavior. From the test results, there were no differences between 35%, 50% high volume fly ash cement concrete and ordinary concrete without fly ash (FA=0%).